# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os.path as osp import numpy as np from paddle.inference import Config from paddle.inference import create_predictor from paddle.inference import PrecisionType from paddlex.cv.models import load_model from paddlex.utils import logging, Timer class Predictor(object): def __init__(self, model_dir, use_gpu=True, gpu_id=0, cpu_thread_num=1, use_mkl=True, mkl_thread_num=4, use_trt=False, use_glog=False, memory_optimize=True, max_trt_batch_size=1, trt_precision_mode='float32'): """ 创建Paddle Predictor Args: model_dir: 模型路径(必须是导出的部署或量化模型) use_gpu: 是否使用gpu,默认True gpu_id: 使用gpu的id,默认0 cpu_thread_num=1:使用cpu进行预测时的线程数,默认为1 use_mkl: 是否使用mkldnn计算库,CPU情况下使用,默认False mkl_thread_num: mkldnn计算线程数,默认为4 use_trt: 是否使用TensorRT,默认False use_glog: 是否启用glog日志, 默认False memory_optimize: 是否启动内存优化,默认True max_trt_batch_size: 在使用TensorRT时配置的最大batch size,默认1 trt_precision_mode:在使用TensorRT时采用的精度,默认float32 """ self.model_dir = model_dir self._model = load_model(model_dir, with_net=False) if trt_precision_mode == 'float32': trt_precision_mode = PrecisionType.Float32 elif trt_precision_mode == 'float16': trt_precision_mode = PrecisionType.Float16 else: logging.error( "TensorRT precision mode {} is invalid. Supported modes are float32 and float16." .format(trt_precision_mode), exit=True) self.predictor = self.create_predictor( use_gpu=use_gpu, gpu_id=gpu_id, cpu_thread_num=cpu_thread_num, use_mkl=use_mkl, mkl_thread_num=mkl_thread_num, use_trt=use_trt, use_glog=use_glog, memory_optimize=memory_optimize, max_trt_batch_size=max_trt_batch_size, trt_precision_mode=trt_precision_mode) self.timer = Timer() def create_predictor(self, use_gpu=True, gpu_id=0, cpu_thread_num=1, use_mkl=True, mkl_thread_num=4, use_trt=False, use_glog=False, memory_optimize=True, max_trt_batch_size=1, trt_precision_mode=PrecisionType.Float32): config = Config( osp.join(self.model_dir, 'model.pdmodel'), osp.join(self.model_dir, 'model.pdiparams')) if use_gpu: # 设置GPU初始显存(单位M)和Device ID config.enable_use_gpu(100, gpu_id) config.switch_ir_optim(True) if use_trt: config.enable_tensorrt_engine( workspace_size=1 << 10, max_batch_size=max_trt_batch_size, min_subgraph_size=3, precision_mode=trt_precision_mode, use_static=False, use_calib_mode=False) else: config.disable_gpu() config.set_cpu_math_library_num_threads(cpu_thread_num) if use_mkl: try: # cache 10 different shapes for mkldnn to avoid memory leak config.set_mkldnn_cache_capacity(10) config.enable_mkldnn() config.set_cpu_math_library_num_threads(mkl_thread_num) except Exception as e: logging.warning( "The current environment does not support `mkldnn`, so disable mkldnn." ) pass if use_glog: config.enable_glog_info() else: config.disable_glog_info() if memory_optimize: config.enable_memory_optim() config.switch_use_feed_fetch_ops(False) predictor = create_predictor(config) return predictor def preprocess(self, images, transforms): preprocessed_samples = self._model._preprocess( images, transforms, to_tensor=False) if self._model.model_type == 'classifier': batch_samples = {'image': preprocessed_samples[0]} elif self._model.model_type == 'segmenter': batch_samples = { 'image': preprocessed_samples[0], 'ori_shape': preprocessed_samples[1] } elif self._model.model_type == 'detector': batch_samples = preprocessed_samples else: logging.error( "Invalid model type {}".format(self._model.model_type), exit=True) return batch_samples def raw_predict(self, inputs): """ 接受预处理过后的数据进行预测 Args: inputs(dict): 预处理过后的数据 """ def predict(self, img_file, topk=1, transforms=None): """ 图片预测 Args: img_file(List[np.ndarray or str], str or np.ndarray): 图像路径;或者是解码后的排列格式为(H, W, C)且类型为float32且为BGR格式的数组。 topk(int): 分类预测时使用,表示预测前topk的结果。 transforms (paddlex.transforms): 数据预处理操作。 """ if transforms is None and not hasattr(self, 'test_transforms'): raise Exception("Transforms need to be defined, now is None.") if transforms is None: transforms = self._model.test_transforms if isinstance(img_file, (str, np.ndarray)): images = [img_file] else: images = img_file self.timer.preprocess_time_s.start() batch_samples = self.preprocess(images, transforms) self.timer.preprocess_time_s.end() input_names = self.predictor.get_input_names() for name in input_names: input_tensor = self.predictor.get_input_handle(name) input_tensor.copy_from_cpu(batch_samples[name]) self.timer.inference_time_s.start() self.predictor.run() output_names = self.predictor.get_output_names()