import paddlex as pdx from paddlex import transforms as T # 下载和解压蔬菜分类数据集 veg_dataset = 'https://bj.bcebos.com/paddlex/datasets/vegetables_cls.tar.gz' pdx.utils.download_and_decompress(veg_dataset, path='./') # 定义训练和验证时的transforms # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/dygraph/docs/apis/transforms/transforms.md train_transforms = T.Compose( [T.RandomCrop(crop_size=224), T.RandomHorizontalFlip(), T.Normalize()]) eval_transforms = T.Compose([ T.ResizeByShort(short_size=256), T.CenterCrop(crop_size=224), T.Normalize() ]) # 定义训练和验证所用的数据集 # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/dygraph/docs/apis/datasets.md train_dataset = pdx.datasets.ImageNet( data_dir='vegetables_cls', file_list='vegetables_cls/train_list.txt', label_list='vegetables_cls/labels.txt', transforms=train_transforms, shuffle=True) eval_dataset = pdx.datasets.ImageNet( data_dir='vegetables_cls', file_list='vegetables_cls/val_list.txt', label_list='vegetables_cls/labels.txt', transforms=eval_transforms) # 初始化模型,并进行训练 # 可使用VisualDL查看训练指标,参考https://github.com/PaddlePaddle/PaddleX/blob/develop/docs/train/visualdl.md num_classes = len(train_dataset.labels) model = pdx.cls.DarkNet53(num_classes=num_classes) # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/dygraph/docs/apis/models/classification.md # 各参数介绍与调整说明:https://github.com/PaddlePaddle/PaddleX/tree/develop/dygraph/docs/parameters.md model.train( num_epochs=10, train_dataset=train_dataset, train_batch_size=32, eval_dataset=eval_dataset, lr_decay_epochs=[4, 6, 8], learning_rate=0.01, save_dir='output/darknet53', use_vdl=True)