# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import shutil import json import random import math import pickle from tqdm import tqdm from collections import defaultdict from paddle.utils import try_import from .....utils.errors import ConvertFailedError from .....utils.logging import info, warning def check_src_dataset(root_dir, dataset_type): """ check src dataset format validity """ if dataset_type in ("PKL"): anno_suffix = ".pkl" else: raise ConvertFailedError( message=f"数据格式转换失败!不支持{dataset_type}格式数据集。当前仅支持 PKL 格式。" ) err_msg_prefix = f"数据格式转换失败!请参考上述`{dataset_type}格式数据集示例`检查待转换数据集格式。" for anno in ['train.txt','val.txt','latex_ocr_tokenizer.json']: src_anno_path = os.path.join(root_dir, anno) if not os.path.exists(src_anno_path): raise ConvertFailedError( message=f"{err_msg_prefix}保证{src_anno_path}文件存在。") return None def convert(dataset_type, input_dir): """ convert dataset to pkl format """ # check format validity check_src_dataset(input_dir, dataset_type) if dataset_type in ("PKL"): convert_pkl_dataset(input_dir) else: raise ConvertFailedError(message=f"数据格式转换失败!不支持{dataset_type}格式数据集。当前仅支持 PKL 格式。") def convert_pkl_dataset(root_dir): for anno in ['train.txt','val.txt']: src_img_dir = os.path.join(root_dir, anno.replace(".txt","")) src_anno_path = os.path.join(root_dir, anno) txt2pickle(src_img_dir, src_anno_path, root_dir) def txt2pickle(images, equations, save_dir): imagesize = try_import("imagesize") save_p = os.path.join(save_dir, "latexocr_{}.pkl".format(images.split("/")[-1])) min_dimensions = (32, 32) max_dimensions = (672, 192) max_length = 512 data = defaultdict(lambda: []) pic_num = 0 if images is not None and equations is not None: with open(equations, "r") as f: lines = f.readlines() for l in tqdm(lines, total = len(lines)): l = l.strip() img_name, equation = l.split("\t") img_path = os.path.join( os.path.abspath(images), img_name) width, height = imagesize.get(img_path) if ( min_dimensions[0] <= width <= max_dimensions[0] and min_dimensions[1] <= height <= max_dimensions[1] ): divide_h = math.ceil(height / 16) * 16 divide_w = math.ceil(width / 16) * 16 data[(divide_w, divide_h)].append((equation, img_path)) pic_num +=1 data = dict(data) with open(save_p, "wb") as file: pickle.dump(data, file)