--- comments: true --- # 文档理解产线使用教程 ## 1. 文档理解产线介绍 文档理解产线是基于视觉-语言模型(VLM)打造的先进文档处理技术,旨在突破传统文档处理的局限。传统方法依赖固定模板或预定义规则解析文档,而该产线借助VLM的多模态能力,仅需输入文档图片和用户问题,即可通过融合视觉与语言信息,精准回答用户提问。这种技术无需针对特定文档格式预训练,能够灵活应对多样化文档内容,显著提升文档处理的泛化性与实用性,在智能问答、信息提取等场景中具有广阔应用前景。本产线目前暂不支持对VLM模型的二次开发,后续计划支持。 文档理解产线中包含了文档类视觉语言模型模块,您可以根据下方的基准测试数据选择使用的模型如果您更注重模型的精度,请选择精度较高的模型;如果您更在意模型的推理速度,请选择推理速度较快的模型;如果您关注模型的存储大小,请选择存储体积较小的模型。

文档类视觉语言模型模块(可选):

模型模型下载链接 模型存储大小(GB) 介绍
PP-DocBee-2B推理模型 4.2 PP-DocBee 是飞桨团队自研的一款专注于文档理解的多模态大模型,在中文文档理解任务上具有卓越表现。该模型通过近 500 万条文档理解类多模态数据集进行微调优化,各种数据集包括了通用VQA类、OCR类、图表类、text-rich文档类、数学和复杂推理类、合成数据类、纯文本数据等,并设置了不同训练数据配比。在学术界权威的几个英文文档理解评测榜单上,PP-DocBee基本都达到了同参数量级别模型的SOTA。在内部业务中文场景类的指标上,PP-DocBee也高于目前的热门开源和闭源模型。
PP-DocBee-7B推理模型 15.8
## 2. 快速开始 ### 2.1 本地体验 > ❗ 在本地使用文档理解产线前,请确保您已经按照[PaddleX本地安装教程](../../../installation/installation.md)完成了PaddleX的wheel包安装。如果您希望选择性安装依赖,请参考安装教程中的相关说明。该产线对应的依赖分组为 `multimodal`。 #### 2.1.1 Python脚本方式集成 * 文档理解产线可以通过几行代码即可完成产线的快速推理,推理代码如下: ```python from paddlex import create_pipeline pipeline = create_pipeline(pipeline="doc_understanding") output = pipeline.predict( { "image": "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/medal_table.png", "query": "识别这份表格的内容" } ) for res in output: res.print() res.save_to_json("./output/") ``` 在上述 Python 脚本中,执行了如下几个步骤: (1)通过 `create_pipeline()` 实例化 文档理解产线 产线对象,具体参数说明如下:
参数 参数说明 参数类型 默认值
pipeline 产线名称或是产线配置文件路径。如为产线名称,则必须为 PaddleX 所支持的产线。 str None
config 产线具体的配置信息(如果和pipeline同时设置,优先级高于pipeline,且要求产线名和pipeline一致)。 dict[str, Any] None
device 产线推理设备。支持指定GPU具体卡号,如“gpu:0”,其他硬件具体卡号,如“npu:0”,CPU如“cpu”。 str None
use_hpip 是否启用高性能推理,仅当该产线支持高性能推理时可用。 bool False
(2)调用 文档理解产线 产线对象的 `predict()` 方法进行推理预测。该方法将返回一个 `generator`。以下是 `predict()` 方法的参数及其说明:
参数 参数说明 参数类型 可选项 默认值
input 待预测数据,目前仅支持字典类型的输入 Python Dict
  • Python Dict:如PP-DocBee的输入形式为: {"image":/path/to/image, "query": user question} ,分别表示输入的图像和对应的用户问题
None
device 产线推理设备 str|None
  • CPU:如 cpu 表示使用 CPU 进行推理;
  • GPU:如 gpu:0 表示使用第 1 块 GPU 进行推理;
  • NPU:如 npu:0 表示使用第 1 块 NPU 进行推理;
  • XPU:如 xpu:0 表示使用第 1 块 XPU 进行推理;
  • MLU:如 mlu:0 表示使用第 1 块 MLU 进行推理;
  • DCU:如 dcu:0 表示使用第 1 块 DCU 进行推理;
  • None:如果设置为 None, 将默认使用产线初始化的该参数值,初始化时,会优先使用本地的 GPU 0号设备,如果没有,则使用 CPU 设备;
None
(3)对预测结果进行处理,每个样本的预测结果均为对应的Result对象,且支持打印、保存为`json`文件的操作:
方法 方法说明 参数 参数类型 参数说明 默认值
print() 打印结果到终端 format_json bool 是否对输出内容进行使用 JSON 缩进格式化 True
indent int 指定缩进级别,以美化输出的 JSON 数据,使其更具可读性,仅当 format_jsonTrue 时有效 4
ensure_ascii bool 控制是否将非 ASCII 字符转义为 Unicode。设置为 True 时,所有非 ASCII 字符将被转义;False 则保留原始字符,仅当format_jsonTrue时有效 False
save_to_json() 将结果保存为json格式的文件 save_path str 保存的文件路径,当为目录时,保存文件命名与输入文件类型命名一致
indent int 指定缩进级别,以美化输出的 JSON 数据,使其更具可读性,仅当 format_jsonTrue 时有效 4
ensure_ascii bool 控制是否将非 ASCII 字符转义为 Unicode。设置为 True 时,所有非 ASCII 字符将被转义;False 则保留原始字符,仅当format_jsonTrue时有效 False
- 调用`print()` 方法会将结果打印到终端,打印到终端的内容解释如下: - `image`: `(str)` 图像的输入路径 - `query`: `(str)` 针对输入图像的问题 - `result`: `(str)` 模型的输出结果 - 调用`save_to_json()` 方法会将上述内容保存到指定的`save_path`中,如果指定为目录,则保存的路径为`save_path/{your_img_basename}_res.json`,如果指定为文件,则直接保存到该文件中。 * 此外,也支持通过属性获取带结果的可视化图像和预测结果,具体如下:
属性 属性说明
json 获取预测的 json 格式的结果
img 获取格式为 dict 的可视化图像
- `json` 属性获取的预测结果为dict类型的数据,相关内容与调用 `save_to_json()` 方法保存的内容一致。 此外,您可以获取 文档理解产线 产线配置文件,并加载配置文件进行预测。可执行如下命令将结果保存在 `my_path` 中: ``` paddlex --get_pipeline_config doc_understanding --save_path ./my_path ``` 若您获取了配置文件,即可对文档理解产线各项配置进行自定义,只需要修改 `create_pipeline` 方法中的 `pipeline` 参数值为产线配置文件路径即可。示例如下: ```python from paddlex import create_pipeline pipeline = create_pipeline(pipeline="./my_path/doc_understanding.yaml") output = pipeline.predict( { "image": "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/medal_table.png", "query": "识别这份表格的内容" } ) for res in output: res.print() res.save_to_json("./output/") ``` 注: 配置文件中的参数为产线初始化参数,如果希望更改文档理解产线初始化参数,可以直接修改配置文件中的参数,并加载配置文件进行预测。同时,CLI 预测也支持传入配置文件,`--pipeline` 指定配置文件的路径即可。 ## 3. 开发集成/部署 如果产线可以达到您对产线推理速度和精度的要求,您可以直接进行开发集成/部署。 若您需要将产线直接应用在您的Python项目中,可以参考 [2.1.2 Python脚本方式](#212-python脚本方式集成)中的示例代码。 此外,PaddleX 也提供了其他三种部署方式,详细说明如下: 🚀 高性能推理(本产线暂不支持):在实际生产环境中,许多应用对部署策略的性能指标(尤其是响应速度)有着较严苛的标准,以确保系统的高效运行与用户体验的流畅性。为此,PaddleX 提供高性能推理插件,旨在对模型推理及前后处理进行深度性能优化,实现端到端流程的显著提速,详细的高性能推理流程请参考[PaddleX高性能推理指南](../../../pipeline_deploy/high_performance_inference.md)。 ☁️ 服务化部署:服务化部署是实际生产环境中常见的一种部署形式。通过将推理功能封装为服务,客户端可以通过网络请求来访问这些服务,以获取推理结果。PaddleX 支持多种产线服务化部署方案,详细的产线服务化部署流程请参考[PaddleX服务化部署指南](../../../pipeline_deploy/serving.md)。 以下是基础服务化部署的API参考与多语言服务调用示例:
API参考

对于服务提供的主要操作:

名称 类型 含义
logId string 请求的UUID。
errorCode integer 错误码。固定为0
errorMsg string 错误说明。固定为"Success"
result object 操作结果。
名称 类型 含义
logId string 请求的UUID。
errorCode integer 错误码。与响应状态码相同。
errorMsg string 错误说明。

服务提供的主要操作如下:

对图像进行目标检测。

POST /open-vocabulary-detection

名称 类型 含义 是否必填
image string 服务器可访问的图像文件的URL或图像文件内容的Base64编码结果。
prompt string 预测使用的文本提示词。
thresholds object | null 模型预测使用的阈值。
名称 类型 含义
detectedObjects array 目标的位置、类别等信息。
image string 目标检测结果图。图像为JPEG格式,使用Base64编码。

detectedObjects中的每个元素为一个object,具有如下属性:

名称 类型 含义
bbox array 目标位置。数组中元素依次为边界框左上角x坐标、左上角y坐标、右下角x坐标以及右下角y坐标。
categoryName string 目标类别名。
score number 目标得分。

result示例如下:

{
"detectedObjects": [
{
"bbox": [
404.4967956542969,
90.15770721435547,
506.2465515136719,
285.4187316894531
],
"categoryName": "bird",
"score": 0.7418514490127563
},
{
"bbox": [
155.33145141601562,
81.10954284667969,
199.71136474609375,
167.4235382080078
],
"categoryName": "dog",
"score": 0.7328268885612488
}
],
"image": "xxxxxx"
}
多语言调用服务示例
Python
import base64


📱 端侧部署:端侧部署是一种将计算和数据处理功能放在用户设备本身上的方式,设备可以直接处理数据,而不需要依赖远程的服务器。PaddleX 支持将模型部署在 Android 等端侧设备上,详细的端侧部署流程请参考[PaddleX端侧部署指南](../../../pipeline_deploy/edge_deploy.md)。 您可以根据需要选择合适的方式部署模型产线,进而进行后续的 AI 应用集成。 ## 4. 二次开发 当前产线暂时不支持微调训练,仅支持推理集成。关于该产线的微调训练,计划在未来支持。 ## 5. 多硬件支持 当前产线暂时仅支持GPU和CPU推理。关于该产线对于更多硬件的适配,计划在未来支持。