# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import tempfile from ...base import BaseRunner from ...base.utils.subprocess import CompletedProcess class ClsRunner(BaseRunner): """ Cls Runner """ _INFER_CONFIG_REL_PATH = os.path.join('deploy', 'configs', 'inference_cls.yaml') def train(self, config_path: str, cli_args: list, device: str, ips: str, save_dir: str, do_eval=True) -> CompletedProcess: """train model Args: config_path (str): the config file path used to train. cli_args (list): the additional parameters. device (str): the training device. ips (str): the ip addresses of nodes when using distribution. save_dir (str): the directory path to save training output. do_eval (bool, optional): whether or not to evaluate model during training. Defaults to True. Returns: CompletedProcess: the result of training subprocess execution. """ args, env = self.distributed(device, ips, log_dir=save_dir) cmd = [*args, 'tools/train.py', '-c', config_path, *cli_args] cmd.extend(['-o', f"Global.eval_during_train={do_eval}"]) return self.run_cmd( cmd, env=env, switch_wdir=True, echo=True, silent=False, capture_output=True, log_path=self._get_train_log_path(save_dir)) def evaluate(self, config_path: str, cli_args: list, device: str, ips: str) -> CompletedProcess: """run model evaluating Args: config_path (str): the config file path used to evaluate. cli_args (list): the additional parameters. device (str): the evaluating device. ips (str): the ip addresses of nodes when using distribution. Returns: CompletedProcess: the result of evaluating subprocess execution. """ args, env = self.distributed(device, ips) cmd = [*args, 'tools/eval.py', '-c', config_path, *cli_args] cp = self.run_cmd( cmd, env=env, switch_wdir=True, echo=True, silent=False, capture_output=True) if cp.returncode == 0: metric_dict = _extract_eval_metrics(cp.stdout) cp.metrics = metric_dict return cp def predict(self, config_path: str, cli_args: list, device: str) -> CompletedProcess: """run predicting using dynamic mode Args: config_path (str): the config file path used to predict. cli_args (list): the additional parameters. device (str): unused. Returns: CompletedProcess: the result of predicting subprocess execution. """ # `device` unused cmd = [self.python, 'tools/infer.py', '-c', config_path, *cli_args] return self.run_cmd(cmd, switch_wdir=True, echo=True, silent=False) def export(self, config_path: str, cli_args: list, device: str, save_dir: str=None) -> CompletedProcess: """run exporting Args: config_path (str): the path of config file used to export. cli_args (list): the additional parameters. device (str): unused. save_dir (str, optional): the directory path to save exporting output. Defaults to None. Returns: CompletedProcess: the result of exporting subprocess execution. """ # `device` unused cmd = [ self.python, 'tools/export_model.py', '-c', config_path, *cli_args, '-o', 'Global.export_for_fd=True', '-o', f"Global.infer_config_path={os.path.join(self.runner_root_path, self._INFER_CONFIG_REL_PATH)}" ] cp = self.run_cmd(cmd, switch_wdir=True, echo=True, silent=False) return cp def infer(self, config_path: str, cli_args: list, device: str) -> CompletedProcess: """run predicting using inference model Args: config_path (str): the path of config file used to predict. cli_args (list): the additional parameters. device (str): unused. Returns: CompletedProcess: the result of infering subprocess execution. """ # `device` unused cmd = [ self.python, 'python/predict_cls.py', '-c', config_path, *cli_args ] return self.run_cmd(cmd, switch_wdir='deploy', echo=True, silent=False) def compression(self, config_path: str, train_cli_args: list, export_cli_args: list, device: str, train_save_dir: str) -> CompletedProcess: """run compression model Args: config_path (str): the path of config file used to predict. train_cli_args (list): the additional training parameters. export_cli_args (list): the additional exporting parameters. device (str): the running device. train_save_dir (str): the directory path to save output. Returns: CompletedProcess: the result of compression subprocess execution. """ # Step 1: Train model cp_train = self.train(config_path, train_cli_args, device, None, train_save_dir) # Step 2: Export model weight_path = os.path.join(train_save_dir, 'best_model', 'model') export_cli_args = [ *export_cli_args, '-o', f"Global.pretrained_model={weight_path}" ] cp_export = self.export(config_path, export_cli_args, device) return cp_train, cp_export def _extract_eval_metrics(stdout: str) -> dict: """extract evaluation metrics from training log Args: stdout (str): the training log Returns: dict: the training metric """ import re _DP = r'[-+]?[0-9]*\.?[0-9]+(?:[eE][-+]?[0-9]+)?' patterns = [ r'\[Eval\]\[Epoch 0\]\[Avg\].*top1: (_dp), top5: (_dp)'.replace('_dp', _DP), r'\[Eval\]\[Epoch 0\]\[Avg\].*recall1: (_dp), recall5: (_dp), mAP: (_dp)'. replace('_dp', _DP), ] keys = [['val.top1', 'val.top5'], ['recall1', 'recall5', 'mAP']] metric_dict = dict() for pattern, key in zip(patterns, keys): pattern = re.compile(pattern) for line in stdout.splitlines(): match = pattern.search(line) if match: for k, v in zip(key, map(float, match.groups())): metric_dict[k] = v return metric_dict