# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, List, Optional, Union import numpy as np from ....utils.deps import pipeline_requires_extra from ...common.batch_sampler import ImageBatchSampler from ...common.reader import ReadImage from ...utils.benchmark import benchmark from ...utils.hpi import HPIConfig from ...utils.pp_option import PaddlePredictorOption from .._parallel import AutoParallelImageSimpleInferencePipeline from ..base import BasePipeline from ..components import CropByBoxes from .result import AttributeRecResult @benchmark.time_methods class _AttributeRecPipeline(BasePipeline): """Attribute Rec Pipeline""" def __init__( self, config: Dict, device: str = None, pp_option: PaddlePredictorOption = None, use_hpip: bool = False, hpi_config: Optional[Union[Dict[str, Any], HPIConfig]] = None, ): super().__init__( device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_config=hpi_config ) self.det_model = self.create_model(config["SubModules"]["Detection"]) self.cls_model = self.create_model(config["SubModules"]["Classification"]) self._crop_by_boxes = CropByBoxes() self._img_reader = ReadImage(format="BGR") self.det_threshold = config["SubModules"]["Detection"].get("threshold", 0.5) self.cls_threshold = config["SubModules"]["Classification"].get( "threshold", 0.7 ) self.batch_sampler = ImageBatchSampler( batch_size=config["SubModules"]["Detection"]["batch_size"] ) self.img_reader = ReadImage(format="BGR") def predict( self, input: Union[str, List[str], np.ndarray, List[np.ndarray]], det_threshold: float = None, cls_threshold: Union[float, dict, list, None] = None, **kwargs ): det_threshold = self.det_threshold if det_threshold is None else det_threshold cls_threshold = self.cls_threshold if cls_threshold is None else cls_threshold for img_id, batch_data in enumerate(self.batch_sampler(input)): raw_imgs = self.img_reader(batch_data.instances) all_det_res = list(self.det_model(raw_imgs, threshold=det_threshold)) for input_path, input_data, raw_img, det_res in zip( batch_data.input_paths, batch_data.instances, raw_imgs, all_det_res ): cls_res = self.get_cls_result(raw_img, det_res, cls_threshold) yield self.get_final_result(input_path, raw_img, det_res, cls_res) def get_cls_result(self, raw_img, det_res, cls_threshold): subs_of_img = list(self._crop_by_boxes(raw_img, det_res["boxes"])) img_list = [img["img"] for img in subs_of_img] all_cls_res = list(self.cls_model(img_list, threshold=cls_threshold)) output = {"label": [], "score": []} for res in all_cls_res: output["label"].append(res["label_names"]) output["score"].append(res["scores"]) return output def get_final_result(self, input_path, raw_img, det_res, rec_res): single_img_res = {"input_path": input_path, "input_img": raw_img, "boxes": []} for i, obj in enumerate(det_res["boxes"]): cls_scores = rec_res["score"][i] labels = rec_res["label"][i] single_img_res["boxes"].append( { "labels": labels, "cls_scores": cls_scores, "det_score": obj["score"], "coordinate": obj["coordinate"], } ) return AttributeRecResult(single_img_res) class AttributeRecPipeline(AutoParallelImageSimpleInferencePipeline): @property def _pipeline_cls(self): return _AttributeRecPipeline def _get_batch_size(self, config): return config["SubModules"]["Detection"]["batch_size"] @pipeline_requires_extra("cv") class PedestrianAttributeRecPipeline(AttributeRecPipeline): entities = "pedestrian_attribute_recognition" @pipeline_requires_extra("cv") class VehicleAttributeRecPipeline(AttributeRecPipeline): entities = "vehicle_attribute_recognition"