# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, List, Optional, Union import numpy as np from ....utils.deps import pipeline_requires_extra from ...models.open_vocabulary_segmentation.results import SAMSegResult from ...utils.benchmark import benchmark from ...utils.hpi import HPIConfig from ...utils.pp_option import PaddlePredictorOption from ..base import BasePipeline Number = Union[int, float] @benchmark.time_methods @pipeline_requires_extra("multimodal") class OpenVocabularySegmentationPipeline(BasePipeline): """Open Vocabulary Segmentation pipeline""" entities = "open_vocabulary_segmentation" def __init__( self, config: Dict, device: str = None, pp_option: PaddlePredictorOption = None, use_hpip: bool = False, hpi_config: Optional[Union[Dict[str, Any], HPIConfig]] = None, ) -> None: """ Initializes the class with given configurations and options. Args: config (Dict): Configuration dictionary containing model and other parameters. device (str): The device to run the prediction on. Default is None. pp_option (PaddlePredictorOption): Options for PaddlePaddle predictor. Default is None. use_hpip (bool, optional): Whether to use the high-performance inference plugin (HPIP) by default. Defaults to False. hpi_config (Optional[Union[Dict[str, Any], HPIConfig]], optional): The default high-performance inference configuration dictionary. Defaults to None. """ super().__init__( device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_config=hpi_config ) # create box-prompted SAM-H box_prompted_model_cfg = config.get("SubModules", {}).get( "BoxPromptSegmentation", {"model_config_error": "config error for doc_ori_classify_model!"}, ) self.box_prompted_model = self.create_model(box_prompted_model_cfg) # create point-prompted SAM-H point_prompted_model_cfg = config.get("SubModules", {}).get( "PointPromptSegmentation", {"model_config_error": "config error for doc_ori_classify_model!"}, ) self.point_prompted_model = self.create_model(point_prompted_model_cfg) def predict( self, input: Union[str, List[str], np.ndarray, List[np.ndarray]], prompt: Union[List[List[float]], np.ndarray], prompt_type: str = "box", **kwargs ) -> SAMSegResult: """Predicts image segmentation results for the given input. Args: input (str | list[str] | np.ndarray | list[np.ndarray]): The input image(s) or path(s) to the images. prompt (list[list[float]] | np.ndarray): The prompt for the input image(s). prompt_type (str): The type of prompt, either 'box' or 'point'. Default is 'box'. **kwargs: Additional keyword arguments that can be passed to the function. Returns: SAMSegResult: The predicted SAM segmentation results. """ if prompt_type == "box": yield from self.box_prompted_model(input, prompts={"box_prompt": prompt}) elif prompt_type == "point": yield from self.point_prompted_model( input, prompts={"point_prompt": prompt} ) else: raise ValueError( "Invalid prompt type. Only 'box' and 'point' are supported" )