# 模型推理 Benchmark PaddleX 支持统计模型推理耗时,需通过环境变量进行设置,具体如下: * `PADDLE_PDX_INFER_BENCHMARK`:设置为 `True` 时则开启 Benchmark,默认为 `False`; * `PADDLE_PDX_INFER_BENCHMARK_WARMUP`:设置 warm up,在开始测试前,使用随机数据循环迭代 n 次,默认为 `0`; * `PADDLE_PDX_INFER_BENCHMARK_DATA_SIZE`: 设置随机数据的尺寸,默认为 `224`; * `PADDLE_PDX_INFER_BENCHMARK_ITER`:使用随机数据进行 Benchmark 测试的循环次数,仅当输入数据为 `None` 时,将使用随机数据进行测试; * `PADDLE_PDX_INFER_BENCHMARK_OUTPUT`:用于设置保存的目录,如 `./benchmark`,默认为 `None`,表示不保存 Benchmark 指标; 使用示例如下: ```bash PADDLE_PDX_INFER_BENCHMARK=True \ PADDLE_PDX_INFER_BENCHMARK_WARMUP=5 \ PADDLE_PDX_INFER_BENCHMARK_DATA_SIZE=320 \ PADDLE_PDX_INFER_BENCHMARK_ITER=10 \ PADDLE_PDX_INFER_BENCHMARK_OUTPUT=./benchmark \ python main.py \ -c ./paddlex/configs/object_detection/PicoDet-XS.yaml \ -o Global.mode=predict \ -o Predict.model_dir=None \ -o Predict.batch_size=2 \ -o Predict.input=None ``` 在开启 Benchmark 后,将自动打印 benchmark 指标: ``` +----------------+-----------------+-----------------+------------------------+ | Component | Total Time (ms) | Number of Calls | Avg Time Per Call (ms) | +----------------+-----------------+-----------------+------------------------+ | ReadCmp | 99.60412979 | 10 | 9.96041298 | | Resize | 17.01641083 | 20 | 0.85082054 | | Normalize | 44.61312294 | 20 | 2.23065615 | | ToCHWImage | 0.03385544 | 20 | 0.00169277 | | Copy2GPU | 13.46874237 | 10 | 1.34687424 | | Infer | 71.31743431 | 10 | 7.13174343 | | Copy2CPU | 0.39076805 | 10 | 0.03907681 | | DetPostProcess | 0.36168098 | 20 | 0.01808405 | +----------------+-----------------+-----------------+------------------------+ +-------------+-----------------+---------------------+----------------------------+ | Stage | Total Time (ms) | Number of Instances | Avg Time Per Instance (ms) | +-------------+-----------------+---------------------+----------------------------+ | PreProcess | 161.26751900 | 20 | 8.06337595 | | Inference | 85.17694473 | 20 | 4.25884724 | | PostProcess | 0.36168098 | 20 | 0.01808405 | | End2End | 256.90770149 | 20 | 12.84538507 | | WarmUp | 5412.37807274 | 10 | 541.23780727 | +-------------+-----------------+---------------------+----------------------------+ ``` 在 Benchmark 结果中,会统计该模型全部组件(`Component`)的总耗时(`Total Time`,单位为“毫秒”)、**调用次数**(`Number of Calls`)、**调用**平均执行耗时(`Avg Time Per Call`,单位“毫秒”),以及按预热(`WarmUp`)、预处理(`PreProcess`)、模型推理(`Inference`)、后处理(`PostProcess`)和端到端(`End2End`)进行划分的耗时统计,包括每个阶段的总耗时(`Total Time`,单位为“毫秒”)、**样本数**(`Number of Instances`)和**单样本**平均执行耗时(`Avg Time Per Instance`,单位“毫秒”),同时,上述指标会保存到到本地: `./benchmark/detail.csv` 和 `./benchmark/summary.csv`: ```csv Component,Total Time (ms),Number of Calls,Avg Time Per Call (ms) ReadCmp,99.60412979125977,10,9.960412979125977 Resize,17.01641082763672,20,0.8508205413818359 Normalize,44.61312294006348,20,2.230656147003174 ToCHWImage,0.033855438232421875,20,0.0016927719116210938 Copy2GPU,13.468742370605469,10,1.3468742370605469 Infer,71.31743431091309,10,7.131743431091309 Copy2CPU,0.39076805114746094,10,0.039076805114746094 DetPostProcess,0.3616809844970703,20,0.018084049224853516 ``` ```csv Stage,Total Time (ms),Number of Instances,Avg Time Per Instance (ms) PreProcess,161.26751899719238,20,8.06337594985962 Inference,85.17694473266602,20,4.258847236633301 PostProcess,0.3616809844970703,20,0.018084049224853516 End2End,256.90770149230957,20,12.845385074615479 WarmUp,5412.3780727386475,10,541.2378072738647 ```