# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from ...base import BaseModel from ...base.utils.arg import CLIArgument from ...base.utils.subprocess import CompletedProcess from ....utils.misc import abspath class SegModel(BaseModel): """ Semantic Segmentation Model """ def train(self, batch_size: int=None, learning_rate: float=None, epochs_iters: int=None, ips: str=None, device: str='gpu', resume_path: str=None, dy2st: bool=False, amp: str='OFF', num_workers: int=None, use_vdl: bool=True, save_dir: str=None, **kwargs) -> CompletedProcess: """train self Args: batch_size (int, optional): the train batch size value. Defaults to None. learning_rate (float, optional): the train learning rate value. Defaults to None. epochs_iters (int, optional): the train epochs value. Defaults to None. ips (str, optional): the ip addresses of nodes when using distribution. Defaults to None. device (str, optional): the running device. Defaults to 'gpu'. resume_path (str, optional): the checkpoint file path to resume training. Train from scratch if it is set to None. Defaults to None. dy2st (bool, optional): Enable dynamic to static. Defaults to False. amp (str, optional): the amp settings. Defaults to 'OFF'. num_workers (int, optional): the workers number. Defaults to None. use_vdl (bool, optional): enable VisualDL. Defaults to True. save_dir (str, optional): the directory path to save train output. Defaults to None. Returns: CompletedProcess: the result of training subprocess execution. """ config = self.config.copy() cli_args = [] if batch_size is not None: cli_args.append(CLIArgument('--batch_size', batch_size)) if learning_rate is not None: cli_args.append(CLIArgument('--learning_rate', learning_rate)) if epochs_iters is not None: cli_args.append(CLIArgument('--iters', epochs_iters)) # No need to handle `ips` if device is not None: device_type, _ = self.runner.parse_device(device) cli_args.append(CLIArgument('--device', device_type)) # For compatibility resume_dir = kwargs.pop('resume_dir', None) if resume_path is None and resume_dir is not None: resume_path = os.path.join(resume_dir, 'model.pdparams') if resume_path is not None: # NOTE: We must use an absolute path here, # so we can run the scripts either inside or outside the repo dir. resume_path = abspath(resume_path) if os.path.basename(resume_path) != 'model.pdparams': raise ValueError(f"{resume_path} has an incorrect file name.") if not os.path.exists(resume_path): raise FileNotFoundError(f"{resume_path} does not exist.") resume_dir = os.path.dirname(resume_path) opts_path = os.path.join(resume_dir, 'model.pdopt') if not os.path.exists(opts_path): raise FileNotFoundError(f"{opts_path} must exist.") cli_args.append(CLIArgument('--resume_model', resume_dir)) if dy2st: config.update_dy2st(dy2st) if use_vdl: cli_args.append(CLIArgument('--use_vdl')) if save_dir is not None: save_dir = abspath(save_dir) else: # `save_dir` is None save_dir = abspath(os.path.join('output', 'train')) cli_args.append(CLIArgument('--save_dir', save_dir)) save_interval = kwargs.pop('save_interval', None) if save_interval is not None: cli_args.append(CLIArgument('--save_interval', save_interval)) do_eval = kwargs.pop('do_eval', True) repeats = kwargs.pop('repeats', None) seed = kwargs.pop('seed', None) profile = kwargs.pop('profile', None) if profile is not None: cli_args.append(CLIArgument('--profiler_options', profile)) log_iters = kwargs.pop('log_iters', None) if log_iters is not None: cli_args.append(CLIArgument('--log_iters', log_iters)) # Benchmarking mode settings benchmark = kwargs.pop('benchmark', None) if benchmark is not None: envs = benchmark.get('env', None) seed = benchmark.get('seed', None) repeats = benchmark.get('repeats', None) do_eval = benchmark.get('do_eval', False) num_workers = benchmark.get('num_workers', None) config.update_log_ranks(device) amp = benchmark.get('amp', None) config.update_print_mem_info(benchmark.get('print_mem_info', True)) config.update_shuffle(benchmark.get('shuffle', False)) if repeats is not None: assert isinstance(repeats, int), 'repeats must be an integer.' cli_args.append(CLIArgument('--repeats', repeats)) if num_workers is not None: assert isinstance(num_workers, int), 'num_workers must be an integer.' cli_args.append(CLIArgument('--num_workers', num_workers)) if seed is not None: assert isinstance(seed, int), 'seed must be an integer.' cli_args.append(CLIArgument('--seed', seed)) if amp in ['O1', 'O2']: cli_args.append(CLIArgument('--precision', 'fp16')) cli_args.append(CLIArgument('--amp_level', amp)) if envs is not None: for env_name, env_value in envs.items(): os.environ[env_name] = str(env_value) else: if amp is not None: if amp != 'OFF': cli_args.append(CLIArgument('--precision', 'fp16')) cli_args.append(CLIArgument('--amp_level', amp)) if num_workers is not None: cli_args.append(CLIArgument('--num_workers', num_workers)) if repeats is not None: cli_args.append(CLIArgument('--repeats', repeats)) if seed is not None: cli_args.append(CLIArgument('--seed', seed)) self._assert_empty_kwargs(kwargs) with self._create_new_config_file() as config_path: config.dump(config_path) return self.runner.train( config_path, cli_args, device, ips, save_dir, do_eval=do_eval) def evaluate(self, weight_path: str, batch_size: int=None, ips: str=None, device: str='gpu', amp: str='OFF', num_workers: int=None, **kwargs) -> CompletedProcess: """evaluate self using specified weight Args: weight_path (str): the path of model weight file to be evaluated. batch_size (int, optional): the batch size value in evaluating. Defaults to None. ips (str, optional): the ip addresses of nodes when using distribution. Defaults to None. device (str, optional): the running device. Defaults to 'gpu'. amp (str, optional): the AMP setting. Defaults to 'OFF'. num_workers (int, optional): the workers number in evaluating. Defaults to None. Returns: CompletedProcess: the result of evaluating subprocess execution. """ config = self.config.copy() cli_args = [] weight_path = abspath(weight_path) cli_args.append(CLIArgument('--model_path', weight_path)) if batch_size is not None: if batch_size != 1: raise ValueError("Batch size other than 1 is not supported.") # No need to handle `ips` if device is not None: device_type, _ = self.runner.parse_device(device) cli_args.append(CLIArgument('--device', device_type)) if amp is not None: if amp != 'OFF': cli_args.append(CLIArgument('--precision', 'fp16')) cli_args.append(CLIArgument('--amp_level', amp)) if num_workers is not None: cli_args.append(CLIArgument('--num_workers', num_workers)) self._assert_empty_kwargs(kwargs) with self._create_new_config_file() as config_path: config.dump(config_path) cp = self.runner.evaluate(config_path, cli_args, device, ips) return cp def predict(self, weight_path: str, input_path: str, device: str='gpu', save_dir: str=None, **kwargs) -> CompletedProcess: """predict using specified weight Args: weight_path (str): the path of model weight file used to predict. input_path (str): the path of image file to be predicted. device (str, optional): the running device. Defaults to 'gpu'. save_dir (str, optional): the directory path to save predict output. Defaults to None. Returns: CompletedProcess: the result of predicting subprocess execution. """ config = self.config.copy() cli_args = [] weight_path = abspath(weight_path) cli_args.append(CLIArgument('--model_path', weight_path)) input_path = abspath(input_path) cli_args.append(CLIArgument('--image_path', input_path)) if device is not None: device_type, _ = self.runner.parse_device(device) cli_args.append(CLIArgument('--device', device_type)) if save_dir is not None: save_dir = abspath(save_dir) else: # `save_dir` is None save_dir = abspath(os.path.join('output', 'predict')) cli_args.append(CLIArgument('--save_dir', save_dir)) self._assert_empty_kwargs(kwargs) with self._create_new_config_file() as config_path: config.dump(config_path) return self.runner.predict(config_path, cli_args, device) def analyse(self, weight_path, ips=None, device='gpu', save_dir=None, **kwargs): """ analyse """ config = self.config.copy() cli_args = [] weight_path = abspath(weight_path) cli_args.append(CLIArgument('--model_path', weight_path)) if device is not None: device_type, _ = self.runner.parse_device(device) cli_args.append(CLIArgument('--device', device_type)) if save_dir is not None: save_dir = abspath(save_dir) else: # `save_dir` is None save_dir = abspath(os.path.join('output', 'analysis')) cli_args.append(CLIArgument('--save_dir', save_dir)) self._assert_empty_kwargs(kwargs) with self._create_new_config_file() as config_path: config.dump(config_path) cp = self.runner.analyse(config_path, cli_args, device, ips) return cp def export(self, weight_path: str, save_dir: str, **kwargs) -> CompletedProcess: """export the dynamic model to static model Args: weight_path (str): the model weight file path that used to export. save_dir (str): the directory path to save export output. Returns: CompletedProcess: the result of exporting subprocess execution. """ config = self.config.copy() cli_args = [] weight_path = abspath(weight_path) cli_args.append(CLIArgument('--model_path', weight_path)) if save_dir is not None: save_dir = abspath(save_dir) else: # `save_dir` is None save_dir = abspath(os.path.join('output', 'export')) cli_args.append(CLIArgument('--save_dir', save_dir)) input_shape = kwargs.pop('input_shape', None) if input_shape is not None: cli_args.append(CLIArgument('--input_shape', *input_shape)) output_op = kwargs.pop('output_op', None) if output_op is not None: assert output_op in ['softmax', 'argmax' ], "`output_op` must be 'softmax' or 'argmax'." cli_args.append(CLIArgument('--output_op', output_op)) self._assert_empty_kwargs(kwargs) with self._create_new_config_file() as config_path: config.dump(config_path) return self.runner.export(config_path, cli_args, None) def infer(self, model_dir: str, input_path: str, device: str='gpu', save_dir: str=None, **kwargs) -> CompletedProcess: """predict image using infernece model Args: model_dir (str): the directory path of inference model files that would use to predict. input_path (str): the path of image that would be predict. device (str, optional): the running device. Defaults to 'gpu'. save_dir (str, optional): the directory path to save output. Defaults to None. Returns: CompletedProcess: the result of infering subprocess execution. """ config = self.config.copy() cli_args = [] model_dir = abspath(model_dir) input_path = abspath(input_path) cli_args.append(CLIArgument('--image_path', input_path)) if device is not None: device_type, _ = self.runner.parse_device(device) cli_args.append(CLIArgument('--device', device_type)) if save_dir is not None: save_dir = abspath(save_dir) else: # `save_dir` is None save_dir = abspath(os.path.join('output', 'infer')) cli_args.append(CLIArgument('--save_dir', save_dir)) self._assert_empty_kwargs(kwargs) with self._create_new_config_file() as config_path: config.dump(config_path) deploy_config_path = os.path.join(model_dir, 'inference.yml') return self.runner.infer(deploy_config_path, cli_args, device) def compression(self, weight_path: str, batch_size: int=None, learning_rate: float=None, epochs_iters: int=None, device: str='gpu', use_vdl: bool=True, save_dir: str=None, **kwargs) -> CompletedProcess: """compression model Args: weight_path (str): the path to weight file of model. batch_size (int, optional): the batch size value of compression training. Defaults to None. learning_rate (float, optional): the learning rate value of compression training. Defaults to None. epochs_iters (int, optional): the epochs or iters of compression training. Defaults to None. device (str, optional): the device to run compression training. Defaults to 'gpu'. use_vdl (bool, optional): whether or not to use VisualDL. Defaults to True. save_dir (str, optional): the directory to save output. Defaults to None. Returns: CompletedProcess: the result of compression subprocess execution. """ # Update YAML config file # NOTE: In PaddleSeg, QAT does not use a different config file than regular training # Reusing `self.config` preserves the config items modified by the user when # `SegModel` is initialized with a `SegConfig` object. config = self.config.copy() train_cli_args = [] export_cli_args = [] weight_path = abspath(weight_path) train_cli_args.append(CLIArgument('--model_path', weight_path)) if batch_size is not None: train_cli_args.append(CLIArgument('--batch_size', batch_size)) if learning_rate is not None: train_cli_args.append(CLIArgument('--learning_rate', learning_rate)) if epochs_iters is not None: train_cli_args.append(CLIArgument('--iters', epochs_iters)) if device is not None: device_type, _ = self.runner.parse_device(device) train_cli_args.append(CLIArgument('--device', device_type)) if use_vdl: train_cli_args.append(CLIArgument('--use_vdl')) if save_dir is not None: save_dir = abspath(save_dir) else: # `save_dir` is None save_dir = abspath(os.path.join('output', 'compress')) train_cli_args.append(CLIArgument('--save_dir', save_dir)) # The exported model saved in a subdirectory named `export` export_cli_args.append( CLIArgument('--save_dir', os.path.join(save_dir, 'export'))) input_shape = kwargs.pop('input_shape', None) if input_shape is not None: export_cli_args.append(CLIArgument('--input_shape', *input_shape)) self._assert_empty_kwargs(kwargs) with self._create_new_config_file() as config_path: config.dump(config_path) return self.runner.compression(config_path, train_cli_args, export_cli_args, device, save_dir)