# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List from fastapi import FastAPI, HTTPException from pydantic import BaseModel, Field from typing_extensions import Annotated from .....utils import logging from ...single_model_pipeline import AnomalyDetection from .. import utils as serving_utils from ..app import AppConfig, create_app from ..models import Response, ResultResponse class InferRequest(BaseModel): image: str class InferResult(BaseModel): labelMap: List[int] size: Annotated[List[int], Field(min_length=2, max_length=2)] image: str def create_pipeline_app(pipeline: AnomalyDetection, app_config: AppConfig) -> FastAPI: app, ctx = create_app( pipeline=pipeline, app_config=app_config, app_aiohttp_session=True ) @app.post( "/anomaly-detection", operation_id="infer", responses={422: {"model": Response}}, ) async def _infer(request: InferRequest) -> ResultResponse[InferResult]: pipeline = ctx.pipeline aiohttp_session = ctx.aiohttp_session try: file_bytes = await serving_utils.get_raw_bytes( request.image, aiohttp_session ) image = serving_utils.image_bytes_to_array(file_bytes) result = (await pipeline.infer(image))[0] pred = result["pred"][0].tolist() size = [len(pred), len(pred[0])] label_map = [item for sublist in pred for item in sublist] output_image_base64 = serving_utils.image_to_base64( result.img.convert("RGB") ) return ResultResponse( logId=serving_utils.generate_log_id(), errorCode=0, errorMsg="Success", result=InferResult( labelMap=label_map, size=size, image=output_image_base64 ), ) except Exception as e: logging.exception(e) raise HTTPException(status_code=500, detail="Internal server error") return app