# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from itertools import islice from typing import List, Optional from fastapi import FastAPI, HTTPException from pydantic import BaseModel, Field from typing_extensions import Annotated from .....utils import logging from ...single_model_pipeline import ImageClassification from .. import utils as serving_utils from ..app import AppConfig, create_app from ..models import Response, ResultResponse class InferenceParams(BaseModel): topK: Optional[Annotated[int, Field(gt=0)]] = None class InferRequest(BaseModel): image: str inferenceParams: Optional[InferenceParams] = None class Category(BaseModel): id: int name: str score: float class InferResult(BaseModel): categories: List[Category] image: str def create_pipeline_app( pipeline: ImageClassification, app_config: AppConfig ) -> FastAPI: app, ctx = create_app( pipeline=pipeline, app_config=app_config, app_aiohttp_session=True ) @app.post( "/image-classification", operation_id="infer", responses={422: {"model": Response}}, ) async def _infer(request: InferRequest) -> ResultResponse[InferResult]: pipeline = ctx.pipeline aiohttp_session = ctx.aiohttp_session try: file_bytes = await serving_utils.get_raw_bytes( request.image, aiohttp_session ) image = serving_utils.image_bytes_to_array(file_bytes) top_k: Optional[int] = None if request.inferenceParams is not None: if request.inferenceParams.topK is not None: top_k = request.inferenceParams.topK result = (await pipeline.infer(image))[0] if "label_names" in result: cat_names = result["label_names"] else: cat_names = [str(id_) for id_ in result["class_ids"]] categories: List[Category] = [] for id_, name, score in islice( zip(result["class_ids"], cat_names, result["scores"]), None, top_k ): categories.append(Category(id=id_, name=name, score=score)) output_image_base64 = serving_utils.image_to_base64(result.img) return ResultResponse( logId=serving_utils.generate_log_id(), errorCode=0, errorMsg="Success", result=InferResult(categories=categories, image=output_image_base64), ) except Exception as e: logging.exception(e) raise HTTPException(status_code=500, detail="Internal server error") return app