# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List import numpy as np import pycocotools.mask as mask_util from fastapi import FastAPI, HTTPException from pydantic import BaseModel, Field from typing_extensions import Annotated, TypeAlias from .....utils import logging from ...single_model_pipeline import InstanceSegmentation from .. import utils as serving_utils from ..app import AppConfig, create_app from ..models import Response, ResultResponse class InferRequest(BaseModel): image: str BoundingBox: TypeAlias = Annotated[List[float], Field(min_length=4, max_length=4)] class Mask(BaseModel): rleResult: str size: Annotated[List[int], Field(min_length=2, max_length=2)] class Instance(BaseModel): bbox: BoundingBox categoryId: int score: float mask: Mask class InferResult(BaseModel): instances: List[Instance] image: str def _rle(mask: np.ndarray) -> str: rle_res = mask_util.encode(np.asarray(mask[..., None], order="F", dtype="uint8"))[0] return rle_res["counts"].decode("utf-8") def create_pipeline_app( pipeline: InstanceSegmentation, app_config: AppConfig ) -> FastAPI: app, ctx = create_app( pipeline=pipeline, app_config=app_config, app_aiohttp_session=True, ) @app.post( "/instance-segmentation", operation_id="infer", responses={422: {"model": Response}}, ) async def _infer(request: InferRequest) -> ResultResponse[InferResult]: pipeline = ctx.pipeline aiohttp_session = ctx.aiohttp_session try: file_bytes = await serving_utils.get_raw_bytes( request.image, aiohttp_session ) image = serving_utils.image_bytes_to_array(file_bytes) result = (await pipeline.infer(image))[0] instances: List[Instance] = [] for obj, mask in zip(result["boxes"], result["masks"]): rle_res = _rle(mask) mask = Mask(rleResult=rle_res, size=mask.shape) instances.append( Instance( bbox=obj["coordinate"], categoryId=obj["cls_id"], score=obj["score"], mask=mask, ) ) output_image_base64 = serving_utils.image_to_base64(result.img) return ResultResponse( logId=serving_utils.generate_log_id(), errorCode=0, errorMsg="Success", result=InferResult(instances=instances, image=output_image_base64), ) except Exception as e: logging.exception(e) raise HTTPException(status_code=500, detail="Internal server error") return app