# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..base import BaseEvaluator from .model_list import MODELS class DetEvaluator(BaseEvaluator): """Object Detection Model Evaluator""" entities = MODELS def _update_dataset(self): """update dataset settings""" metric = self.pdx_config.metric if 'metric' in self.pdx_config else 'COCO' data_fields = self.pdx_config.EvalDataset['data_fields'] if 'data_fields' in self.pdx_config.EvalDataset else None self.pdx_config.update_dataset( self.global_config.dataset_dir, "COCODetDataset", data_fields=data_fields, metric=metric, ) def update_config(self): """update evalution config""" if self.eval_config.log_interval: self.pdx_config.update_log_interval(self.eval_config.log_interval) self._update_dataset() self.pdx_config.update_weights(self.eval_config.weight_path) def get_eval_kwargs(self) -> dict: """get key-value arguments of model evalution function Returns: dict: the arguments of evaluation function. """ return { "weight_path": self.eval_config.weight_path, "device": self.get_device(using_device_number=1), }