# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from ... import c_lib_wrap as C class Processor: def __init__(self): self.processor = None def __call__(self, mat): """call for processing input. :param mat: The input data FDMat or FDMatBatch. """ self.processor(mat) class ResizeByShort(Processor): def __init__(self, target_size: int, interp=1, use_scale=True, max_hw=[]): """Create a ResizeByShort operation with the given parameters. :param target_size: The target short size to resize the image :param interp: Optionally, the interpolation mode for resizing image :param use_scale: Optionally, whether to scale image :param max_hw: Max spatial size which is used by ResizeByShort """ self.processor = C.vision.processors.ResizeByShort( target_size, interp, use_scale, max_hw ) class CenterCrop(Processor): def __init__(self, width, height): """Create a CenterCrop operation with the given parameters. :param width: Desired width of the cropped image :param height: Desired height of the cropped image """ self.processor = C.vision.processors.CenterCrop(width, height) class Pad(Processor): def __init__(self, top: int, bottom: int, left: int, right: int, value=[]): """Create a Pad operation with the given parameters. :param top: The top padding :param bottom: The bottom padding :param left: The left padding :param right: The right padding :param value: the value that is used to pad on the input image """ self.processor = C.vision.processors.Pad(top, bottom, left, right, value) class NormalizeAndPermute(Processor): def __init__(self, mean=[], std=[], is_scale=True, min=[], max=[], swap_rb=False): """Create a Normalize and a Permute operation with the given parameters. :param mean: A list containing the mean of each channel :param std: A list containing the standard deviation of each channel :param is_scale: Specifies if the image are being scaled or not :param min: A list containing the minimum value of each channel :param max: A list containing the maximum value of each channel """ self.processor = C.vision.processors.NormalizeAndPermute( mean, std, is_scale, min, max, swap_rb ) class Cast(Processor): def __init__(self, dtype="float"): """Creat a new cast opereaton with given dtype :param dtype: Target dtype of the output """ self.processor = C.vision.processors.Cast(dtype) class HWC2CHW(Processor): def __init__(self): """Creat a new hwc2chw processor with default dtype. :return An instance of processor `HWC2CHW` """ self.processor = C.vision.processors.HWC2CHW() class Normalize(Processor): def __init__(self, mean, std, is_scale=True, min=[], max=[], swap_rb=False): """Creat a new normalize opereator with given parameters. :param mean: A list containing the mean of each channel :param std: A list containing the standard deviation of each channel :param is_scale: Specifies if the image are being scaled or not :param min: A list containing the minimum value of each channel :param max: A list containing the maximum value of each channel """ self.processor = C.vision.processors.Normalize( mean, std, is_scale, min, max, swap_rb ) class PadToSize(Processor): def __init__(self, width, height, value=[]): """Create a new PadToSize opereator with given parameters. :param width: Desired width of the output image :param height: Desired height of the output image :param value: Values to pad with """ self.processor = C.vision.processors.PadToSize(width, height, value) class Resize(Processor): def __init__( self, width, height, scale_w=-1.0, scale_h=-1.0, interp=1, use_scale=False ): """Create a Resize operation with the given parameters. :param width: Desired width of the output image :param height: Desired height of the output image :param scale_w: Scales the width in x-direction :param scale_h: Scales the height in y-direction :param interp: Optionally, the interpolation mode for resizing image :param use_scale: Optionally, whether to scale image """ self.processor = C.vision.processors.Resize( width, height, scale_w, scale_h, interp, use_scale ) class StridePad(Processor): def __init__(self, stride, value=[]): """Create a StridePad processor with given parameters. :param stride: Stride of the processor :param value: Values to pad with """ self.processor = C.vision.processors.StridePad(stride, value)