// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include // NOLINT #include #include #include #include #include #include #include #include "meter/global.h" #include "meter/readvalue.h" #include "include/paddlex/paddlex.h" #include "include/paddlex/visualize.h" using namespace std::chrono; // NOLINT DEFINE_string(det_model_dir, "", "Path of detection inference model"); DEFINE_string(seg_model_dir, "", "Path of segmentation inference model"); DEFINE_bool(use_gpu, false, "Infering with GPU or CPU"); DEFINE_bool(use_trt, false, "Infering with TensorRT"); DEFINE_bool(use_camera, false, "Infering with Camera"); DEFINE_bool(use_erode, true, "Eroding predicted label map"); DEFINE_int32(gpu_id, 0, "GPU card id"); DEFINE_int32(camera_id, 0, "Camera id"); DEFINE_int32(thread_num, omp_get_num_procs(), "Number of preprocessing threads"); DEFINE_int32(erode_kernel, true, "Eroding kernel size"); DEFINE_int32(seg_batch_size, 2, "Batch size of segmentation infering"); DEFINE_string(det_key, "", "Detector key of encryption"); DEFINE_string(seg_key, "", "Segmenter model key of encryption"); DEFINE_string(image, "", "Path of test image file"); DEFINE_string(image_list, "", "Path of test image list file"); DEFINE_string(save_dir, "output", "Path to save visualized image"); void predict(const cv::Mat &input_image, PaddleX::Model *det_model, PaddleX::Model *seg_model, const std::string save_dir, const std::string image_path, const bool use_erode, const int erode_kernel, const int thread_num, const int seg_batch_size) { PaddleX::DetResult det_result; det_model->predict(input_image, &det_result); int meter_num = det_result.boxes.size(); if (!meter_num) { std::cout << "Don't find any meter." << std::endl; return; } std::vector> seg_result(meter_num); for (int i = 0; i < meter_num; i += seg_batch_size) { int im_vec_size = std::min(static_cast(meter_num), i + seg_batch_size); std::vector meters_image(im_vec_size - i); int batch_thread_num = std::min(thread_num, im_vec_size - i); #pragma omp parallel for num_threads(batch_thread_num) for (int j = i; j < im_vec_size; ++j) { int left = static_cast(det_result.boxes[j].coordinate[0]); int top = static_cast(det_result.boxes[j].coordinate[1]); int width = static_cast(det_result.boxes[j].coordinate[2]); int height = static_cast(det_result.boxes[j].coordinate[3]); int right = left + width - 1; int bottom = top + height - 1; cv::Mat sub_image = input_image( cv::Range(top, bottom + 1), cv::Range(left, right + 1)); float scale_x = static_cast(METER_SHAPE[0]) / static_cast(sub_image.cols); float scale_y = static_cast(METER_SHAPE[1]) / static_cast(sub_image.rows); cv::resize(sub_image, sub_image, cv::Size(), scale_x, scale_y, cv::INTER_LINEAR); meters_image[j - i] = std::move(sub_image); } std::vector batch_result(im_vec_size - i); seg_model->predict(meters_image, &batch_result, batch_thread_num); #pragma omp parallel for num_threads(batch_thread_num) for (int j = i; j < im_vec_size; ++j) { if (use_erode) { cv::Mat kernel(4, 4, CV_8U, cv::Scalar(1)); std::vector label_map( batch_result[j - i].label_map.data.begin(), batch_result[j - i].label_map.data.end()); cv::Mat mask(batch_result[j - i].label_map.shape[0], batch_result[j - i].label_map.shape[1], CV_8UC1, label_map.data()); cv::erode(mask, mask, kernel); std::vector map; if (mask.isContinuous()) { map.assign(mask.data, mask.data + mask.total() * mask.channels()); } else { for (int r = 0; r < mask.rows; r++) { map.insert(map.end(), mask.ptr(r), mask.ptr(r) + mask.cols * mask.channels()); } } seg_result[j] = std::move(map); } else { seg_result[j] = std::move(batch_result[j - i].label_map.data); } } } std::vector read_results(meter_num); int all_thread_num = std::min(thread_num, meter_num); read_process(seg_result, &read_results, all_thread_num); cv::Mat output_image = input_image.clone(); for (int i = 0; i < meter_num; i++) { float result = 0;; if (read_results[i].scale_num > TYPE_THRESHOLD) { result = read_results[i].scales * meter_config[0].scale_value; } else { result = read_results[i].scales * meter_config[1].scale_value; } std::cout << "-- Meter " << i << " -- result: " << result << " --" << std::endl; int lx = static_cast(det_result.boxes[i].coordinate[0]); int ly = static_cast(det_result.boxes[i].coordinate[1]); int w = static_cast(det_result.boxes[i].coordinate[2]); int h = static_cast(det_result.boxes[i].coordinate[3]); cv::Rect bounding_box = cv::Rect(lx, ly, w, h) & cv::Rect(0, 0, output_image.cols, output_image.rows); if (w > 0 && h > 0) { cv::Scalar color = cv::Scalar(237, 189, 101); cv::rectangle(output_image, bounding_box, color); cv::rectangle(output_image, cv::Point2d(lx, ly), cv::Point2d(lx + w, ly - 30), color, -1); std::string class_name = "Meter"; cv::putText(output_image, class_name + " " + std::to_string(result), cv::Point2d(lx, ly-5), cv::FONT_HERSHEY_SIMPLEX, 1, cv::Scalar(255, 255, 255), 2); } } cv::Mat result_image; cv::Size resize_size(RESULT_SHAPE[0], RESULT_SHAPE[1]); cv::resize(output_image, result_image, resize_size, 0, 0, cv::INTER_LINEAR); std::string save_path = PaddleX::generate_save_path(save_dir, image_path); cv::imwrite(save_path, result_image); return; } int main(int argc, char **argv) { google::ParseCommandLineFlags(&argc, &argv, true); if (FLAGS_det_model_dir == "") { std::cerr << "--det_model_dir need to be defined" << std::endl; return -1; } if (FLAGS_seg_model_dir == "") { std::cerr << "--seg_model_dir need to be defined" << std::endl; return -1; } if (FLAGS_image == "" & FLAGS_image_list == "" & FLAGS_use_camera == false) { std::cerr << "--image or --image_list need to be defined " << "when the camera is not been used" << std::endl; return -1; } // 加载模型 PaddleX::Model det_model; det_model.Init(FLAGS_det_model_dir, FLAGS_use_gpu, FLAGS_use_trt, FLAGS_gpu_id, FLAGS_det_key); PaddleX::Model seg_model; seg_model.Init(FLAGS_seg_model_dir, FLAGS_use_gpu, FLAGS_use_trt, FLAGS_gpu_id, FLAGS_seg_key); double total_running_time_s = 0.0; double total_imread_time_s = 0.0; int imgs = 1; if (FLAGS_use_camera) { cv::VideoCapture cap(FLAGS_camera_id); cap.set(CV_CAP_PROP_FRAME_WIDTH, IMAGE_SHAPE[0]); cap.set(CV_CAP_PROP_FRAME_HEIGHT, IMAGE_SHAPE[1]); if (!cap.isOpened()) { std::cout << "Open the camera unsuccessfully." << std::endl; return -1; } std::cout << "Open the camera successfully." << std::endl; while (1) { auto start = system_clock::now(); cv::Mat im; cap >> im; auto imread_end = system_clock::now(); std::cout << "-------------------------" << std::endl; std::cout << "Got a camera image." << std::endl; std::string ext_name = ".jpg"; predict(im, &det_model, &seg_model, FLAGS_save_dir, std::to_string(imgs) + ext_name, FLAGS_use_erode, FLAGS_erode_kernel, FLAGS_thread_num, FLAGS_seg_batch_size); imgs++; auto imread_duration = duration_cast(imread_end - start); total_imread_time_s += static_cast(imread_duration.count()) * microseconds::period::num / microseconds::period::den; auto end = system_clock::now(); auto duration = duration_cast(end - start); total_running_time_s += static_cast(duration.count()) * microseconds::period::num / microseconds::period::den; } cap.release(); cv::destroyAllWindows(); } else { if (FLAGS_image_list != "") { std::ifstream inf(FLAGS_image_list); if (!inf) { std::cerr << "Fail to open file " << FLAGS_image_list << std::endl; return -1; } std::string image_path; while (getline(inf, image_path)) { auto start = system_clock::now(); cv::Mat im = cv::imread(image_path, 1); imgs++; auto imread_end = system_clock::now(); predict(im, &det_model, &seg_model, FLAGS_save_dir, image_path, FLAGS_use_erode, FLAGS_erode_kernel, FLAGS_thread_num, FLAGS_seg_batch_size); auto imread_duration = duration_cast(imread_end - start); total_imread_time_s += static_cast(imread_duration.count()) * microseconds::period::num / microseconds::period::den; auto end = system_clock::now(); auto duration = duration_cast(end - start); total_running_time_s += static_cast(duration.count()) * microseconds::period::num / microseconds::period::den; } } else { auto start = system_clock::now(); cv::Mat im = cv::imread(FLAGS_image, 1); auto imread_end = system_clock::now(); predict(im, &det_model, &seg_model, FLAGS_save_dir, FLAGS_image, FLAGS_use_erode, FLAGS_erode_kernel, FLAGS_thread_num, FLAGS_seg_batch_size); auto imread_duration = duration_cast(imread_end - start); total_imread_time_s += static_cast(imread_duration.count()) * microseconds::period::num / microseconds::period::den; auto end = system_clock::now(); auto duration = duration_cast(end - start); total_running_time_s += static_cast(duration.count()) * microseconds::period::num / microseconds::period::den; } } std::cout << "Total running time: " << total_running_time_s << " s, average running time: " << total_running_time_s / imgs << " s/img, total read img time: " << total_imread_time_s << " s, average read time: " << total_imread_time_s / imgs << " s/img" << std::endl; return 0; }