# PaddleX 模型列表 ## 一、图像分类 ### 1. ResNet 系列 | 模型名称 | config | | :--- | :---: | | ResNet18 | [ResNet18.yaml](../../../paddlex/configs/image_classification/ResNet18.yaml)| | ResNet18_vd | [ResNet18_vd.yaml](../../../paddlex/configs/image_classification/ResNet18_vd.yaml)| | ResNet34 | [ResNet34.yaml](../../../paddlex/configs/image_classification/ResNet34.yaml)| | ResNet34_vd | [ResNet34_vd.yaml](../../../paddlex/configs/image_classification/ResNet34_vd.yaml)| | ResNet50 | [ResNet50.yaml](../../../paddlex/configs/image_classification/ResNet50.yaml)| | ResNet50_vd | [ResNet50_vd.yaml](../../../paddlex/configs/image_classification/ResNet50_vd.yaml)| | ResNet101 | [ResNet101.yaml](../../../paddlex/configs/image_classification/ResNet101.yaml)| | ResNet101_vd | [ResNet101_vd.yaml](../../../paddlex/configs/image_classification/ResNet101_vd.yaml)| | ResNet152 | [ResNet152.yaml](../../../paddlex/configs/image_classification/ResNet152.yaml)| | ResNet152_vd | [ResNet152_vd.yaml](../../../paddlex/configs/image_classification/ResNet152_vd.yaml)| | ResNet200_vd | [ResNet200_vd.yaml](../../../paddlex/configs/image_classification/ResNet200_vd.yaml)| ### 2.PP-LCNet & PP-LCNetV2 系列 | 模型名称 | config | | :--- | :---: | | PP-LCNet_x0_25 | [PP-LCNet_x0_25.yaml](../../../paddlex/configs/image_classification/PP-LCNet_x0_25.yaml)| | PP-LCNet_x0_35 | [PP-LCNet_x0_35.yaml](../../../paddlex/configs/image_classification/PP-LCNet_x0_35.yaml)| | PP-LCNet_x0_5 | [PP-LCNet_x0_5.yaml](../../../paddlex/configs/image_classification/PP-LCNet_x0_5.yaml)| | PP-LCNet_x0_75 | [PP-LCNet_x0_75.yaml](../../../paddlex/configs/image_classification/PP-LCNet_x0_75.yaml)| | PP-LCNet_x1_0 | [PP-LCNet_x1_0.yaml](../../../paddlex/configs/image_classification/PP-LCNet_x1_0.yaml)| | PP-LCNet_x1_5 | [PP-LCNet_x1_5.yaml](../../../paddlex/configs/image_classification/PP-LCNet_x1_5.yaml)| | PP-LCNet_x2_0 | [PP-LCNet_x2_0.yaml](../../../paddlex/configs/image_classification/PP-LCNet_x2_0.yaml)| | PP-LCNet_x2_5 | [PP-LCNet_x2_5.yaml](../../../paddlex/configs/image_classification/PP-LCNet_x2_5.yaml)| | PP-LCNetV2_small | [PP-LCNetV2_small.yaml](../../../paddlex/configs/image_classification/PP-LCNetV2_small.yaml)| | PP-LCNetV2_base | [PP-LCNetV2_base.yaml](../../../paddlex/configs/image_classification/PP-LCNetV2_base.yaml)| | PP-LCNetV2_large | [PP-LCNetV2_large.yaml](../../../paddlex/configs/image_classification/PP-LCNetV2_large.yaml)| ### 3.MobileNetV1 系列 | 模型名称 | config | | :--- | :---: | | MobileNetV1_x0_25 | [MobileNetV1_x0_25.yaml](../../../paddlex/configs/image_classification/MobileNetV1_x0_25.yaml)| | MobileNetV1_x0_5 | [MobileNetV1_x0_5.yaml](../../../paddlex/configs/image_classification/MobileNetV1_x0_5.yaml)| | MobileNetV1_x0_75 | [MobileNetV1_x0_75.yaml](../../../paddlex/configs/image_classification/MobileNetV1_x0_75.yaml)| | MobileNetV1_x1_0 | [MobileNetV1_x1_0.yaml](../../../paddlex/configs/image_classification/MobileNetV1_x1_0.yaml)| ### 4.MobileNetV2 系列 | 模型名称 | config | | :--- | :---: | | MobileNetV2_x0_25 | [MobileNetV2_x0_25.yaml](../../../paddlex/configs/image_classification/MobileNetV2_x0_25.yaml)| | MobileNetV2_x0_5 | [MobileNetV2_x0_5.yaml](../../../paddlex/configs/image_classification/MobileNetV2_x0_5.yaml)| | MobileNetV2_x1_0 | [MobileNetV2_x1_0.yaml](../../../paddlex/configs/image_classification/MobileNetV2_x1_0.yaml)| | MobileNetV2_x1_5 | [MobileNetV2_x1_5.yaml](../../../paddlex/configs/image_classification/MobileNetV2_x1_5.yaml)| | MobileNetV2_x2_0 | [MobileNetV2_x2_0.yaml](../../../paddlex/configs/image_classification/MobileNetV2_x2_0.yaml)| ### 5.MobileNetV3 系列 | 模型名称 | config | | :--- | :---: | | MobileNetV3_small_x0_35 | [MobileNetV3_small_x0_35.yaml](../../../paddlex/configs/image_classification/MobileNetV3_small_x0_35.yaml)| | MobileNetV3_small_x0_5 | [MobileNetV3_small_x0_5.yaml](../../../paddlex/configs/image_classification/MobileNetV3_small_x0_5.yaml)| | MobileNetV3_small_x0_75 | [MobileNetV3_small_x0_75.yaml](../../../paddlex/configs/image_classification/MobileNetV3_small_x0_75.yaml)| | MobileNetV3_small_x1_0 | [MobileNetV3_small_x1_0.yaml](../../../paddlex/configs/image_classification/MobileNetV3_small_x1_0.yaml)| | MobileNetV3_small_x1_25 | [MobileNetV3_small_x1_25.yaml](../../../paddlex/configs/image_classification/MobileNetV3_small_x1_25.yaml)| | MobileNetV3_large_x0_35 | [MobileNetV3_large_x0_35.yaml](../../../paddlex/configs/image_classification/MobileNetV3_large_x0_35.yaml)| | MobileNetV3_large_x0_5 | [MobileNetV3_large_x0_5.yaml](../../../paddlex/configs/image_classification/MobileNetV3_large_x0_5.yaml)| | MobileNetV3_large_x0_75 | [MobileNetV3_large_x0_75.yaml](../../../paddlex/configs/image_classification/MobileNetV3_large_x0_75.yaml)| | MobileNetV3_large_x1_0 | [MobileNetV3_large_x1_0.yaml](../../../paddlex/configs/image_classification/MobileNetV3_large_x1_0.yaml)| | MobileNetV3_large_x1_25 | [MobileNetV3_large_x1_25.yaml](../../../paddlex/configs/image_classification/MobileNetV3_large_x1_25.yaml)| ### 6.PP-HGNet 系列 | 模型名称 | config | | :--- | :---: | | PP-HGNet_tiny | [PP-HGNet_tiny.yaml](../../../paddlex/configs/image_classification/PP-HGNet_tiny.yaml)| | PP-HGNet_small | [PP-HGNet_small.yaml](../../../paddlex/configs/image_classification/PP-HGNet_small.yaml)| | PP-HGNet_base | [PP-HGNet_base.yaml](../../../paddlex/configs/image_classification/PP-HGNet_base.yaml)| ### 7.PP-HGNetV2 系列 | 模型名称 | config | | :--- | :---: | | PP-HGNetV2-B0 | [PP-HGNetV2-B0.yaml](../../../paddlex/configs/image_classification/PP-HGNetV2-B0.yaml)| | PP-HGNetV2-B1 | [PP-HGNetV2-B1.yaml](../../../paddlex/configs/image_classification/PP-HGNetV2-B1.yaml)| | PP-HGNetV2-B2 | [PP-HGNetV2-B2.yaml](../../../paddlex/configs/image_classification/PP-HGNetV2-B2.yaml)| | PP-HGNetV2-B3 | [PP-HGNetV2-B3.yaml](../../../paddlex/configs/image_classification/PP-HGNetV2-B3.yaml)| | PP-HGNetV2-B4 | [PP-HGNetV2-B4.yaml](../../../paddlex/configs/image_classification/PP-HGNetV2-B4.yaml)| | PP-HGNetV2-B5 | [PP-HGNetV2-B5.yaml](../../../paddlex/configs/image_classification/PP-HGNetV2-B5.yaml)| | PP-HGNetV2-B6 | [PP-HGNetV2-B6.yaml](../../../paddlex/configs/image_classification/PP-HGNetV2-B6.yaml)| ### 8.CLIP 系列 | 模型名称 | config | | :--- | :---: | | CLIP_vit_base_patch16_224 | [CLIP_vit_base_patch16_224.yaml](../../../paddlex/configs/image_classification/CLIP_vit_base_patch16_224.yaml)| | CLIP_vit_large_patch14_224 | [CLIP_vit_large_patch14_224.yaml](../../../paddlex/configs/image_classification/CLIP_vit_large_patch14_224.yaml)| ### 9.ConvNeXt 系列 | 模型名称 | config | | :--- | :---: | | ConvNeXt_tiny | [ConvNeXt_tiny.yaml](../../../paddlex/configs/image_classification/ConvNeXt_tiny.yaml)| | ConvNeXt_small | [ConvNeXt_small.yaml](../../../paddlex/configs/image_classification/ConvNeXt_small.yaml)| | ConvNeXt_base_224 | [ConvNeXt_base_224.yaml](../../../paddlex/configs/image_classification/ConvNeXt_base_224.yaml)| | ConvNeXt_base_384 | [ConvNeXt_base_384.yaml](../../../paddlex/configs/image_classification/ConvNeXt_base_384.yaml)| | ConvNeXt_large_224 | [ConvNeXt_large_224.yaml](../../../paddlex/configs/image_classification/ConvNeXt_large_224.yaml)| | ConvNeXt_large_384 | [ConvNeXt_large_384.yaml](../../../paddlex/configs/image_classification/ConvNeXt_large_384.yaml)| ### 10.SwinTransformer系列 | 模型名称 | config | | :--- | :---: | | SwinTransformer_tiny_patch4_window7_224 | [SwinTransformer_tiny_patch4_window7_224.yaml](../../../paddlex/configs/image_classification/SwinTransformer_tiny_patch4_window7_224.yaml)| | SwinTransformer_small_patch4_window7_224 | [SwinTransformer_small_patch4_window7_224.yaml](../../../paddlex/configs/image_classification/SwinTransformer_small_patch4_window7_224.yaml)| | SwinTransformer_base_patch4_window7_224 | [SwinTransformer_base_patch4_window7_224.yaml](../../../paddlex/configs/image_classification/SwinTransformer_base_patch4_window7_224.yaml)| | SwinTransformer_base_patch4_window12_384 | [SwinTransformer_base_patch4_window12_384.yaml](../../../paddlex/configs/image_classification/SwinTransformer_base_patch4_window12_384.yaml)| | SwinTransformer_large_patch4_window7_224 | [SwinTransformer_large_patch4_window7_224.yaml](../../../paddlex/configs/image_classification/SwinTransformer_large_patch4_window7_224.yaml)| | SwinTransformer_large_patch4_window12_384 | [SwinTransformer_large_patch4_window12_384.yaml](../../../paddlex/configs/image_classification/SwinTransformer_large_patch4_window12_384.yaml)| ## 二、目标检测 ### 1. PP-YOLOE_plus 系列 | 模型名称 | config | | :--- | :---: | | PP-YOLOE_plus-S | [PP-YOLOE_plus-S.yaml](../../../paddlex/configs/object_detection/PP-YOLOE_plus-S.yaml)| | PP-YOLOE_plus-M | [PP-YOLOE_plus-M.yaml](../../../paddlex/configs/object_detection/PP-YOLOE_plus-M.yaml)| | PP-YOLOE_plus-L | [PP-YOLOE_plus-L.yaml](../../../paddlex/configs/object_detection/PP-YOLOE_plus-L.yaml)| | PP-YOLOE_plus-X | [PP-YOLOE_plus-X.yaml](../../../paddlex/configs/object_detection/PP-YOLOE_plus-X.yaml)| ### 2. RT-DETR 系列 | 模型名称 | config | | :--- | :---: | | RT-DETR-R18 | [RT-DETR-R18.yaml](../../../paddlex/configs/object_detection/RT-DETR-R18.yaml)| | RT-DETR-R50 | [RT-DETR-R50.yaml](../../../paddlex/configs/object_detection/RT-DETR-R50.yaml)| | RT-DETR-L | [RT-DETR-L.yaml](../../../paddlex/configs/object_detection/RT-DETR-L.yaml)| | RT-DETR-H | [RT-DETR-H.yaml](../../../paddlex/configs/object_detection/RT-DETR-H.yaml)| | RT-DETR-X | [RT-DETR-X.yaml](../../../paddlex/configs/object_detection/RT-DETR-X.yaml)| ### 3. PicoDet系列 | 模型名称 | config | | :--- | :---: | | PicoDet-S | [PicoDet-S.yaml](../../../paddlex/configs/object_detection/PicoDet-S.yaml)| | PicoDet-L | [PicoDet-L.yaml](../../../paddlex/configs/object_detection/PicoDet-L.yaml)| ### 4. YOLOv3 系列 | 模型名称 | config | | :--- | :---: | | YOLOv3-DarkNet53 | [YOLOv3-DarkNet53.yaml](../../../paddlex/configs/object_detection/YOLOv3-DarkNet53.yaml)| | YOLOv3-MobileNetV3 | [YOLOv3-MobileNetV3.yaml](../../../paddlex/configs/object_detection/YOLOv3-MobileNetV3.yaml)| | YOLOv3-ResNet50_vd_DCN | [YOLOv3-ResNet50_vd_DCN.yaml](../../../paddlex/configs/object_detection/YOLOv3-ResNet50_vd_DCN.yaml)| ### 5. YOLOX 系列 | 模型名称 | config | | :--- | :---: | | YOLOX-L | [YOLOX-L.yaml](../../../paddlex/configs/object_detection/YOLOX-L.yaml)| | YOLOX-M | [YOLOX-M.yaml](../../../paddlex/configs/object_detection/YOLOX-M.yaml)| | YOLOX-N | [YOLOX-N.yaml](../../../paddlex/configs/object_detection/YOLOX-N.yaml)| | YOLOX-S | [YOLOX-S.yaml](../../../paddlex/configs/object_detection/YOLOX-S.yaml)| | YOLOX-T | [YOLOX-T.yaml](../../../paddlex/configs/object_detection/YOLOX-T.yaml)| | YOLOX-X | [YOLOX-X.yaml](../../../paddlex/configs/object_detection/YOLOX-X.yaml)| ## 三、实例分割 ### 1.Mask-RT-DETR 系列 | 模型名称 | config | | :--- | :---: | | Mask-RT-DETR-L | [Mask-RT-DETR-L.yaml](../../../paddlex/configs/instance_segmentation/Mask-RT-DETR-L.yaml)| | Mask-RT-DETR-H | [Mask-RT-DETR-H.yaml](../../../paddlex/configs/instance_segmentation/Mask-RT-DETR-H.yaml)| ## 四、语义分割 ### 1.Deeplabv3 系列 | 模型名称 | config | | :--- | :---: | | Deeplabv3-R50 | [Deeplabv3-R50.yaml](../../../paddlex/configs/semantic_segmentation/Deeplabv3-R50.yaml)| | Deeplabv3-R101 | [Deeplabv3-R101.yaml](../../../paddlex/configs/semantic_segmentation/Deeplabv3-R101.yaml)| | Deeplabv3_Plus-R50 | [Deeplabv3_Plus-R50.yaml](../../../paddlex/configs/semantic_segmentation/Deeplabv3_Plus-R50.yaml)| | Deeplabv3_Plus-R101 | [Deeplabv3_Plus-R101.yaml](../../../paddlex/configs/semantic_segmentation/Deeplabv3_Plus-R101.yaml)| ### 2.OCRNet 系列 | 模型名称 | config | | :--- | :---: | | OCRNet_HRNet-W48 | [OCRNet_HRNet-W48.yaml](../../../paddlex/configs/semantic_segmentation/OCRNet_HRNet-W48.yaml)| | OCRNet_HRNet-W18 | [OCRNet_HRNet-W18.yaml](../../../paddlex/configs/semantic_segmentation/OCRNet_HRNet-W18.yaml)| ### 3.PP-LiteSeg系列 | 模型名称 | config | | :--- | :---: | | PP-LiteSeg-T | [PP-LiteSeg-T.yaml](../../../paddlex/configs/semantic_segmentation/PP-LiteSeg-T.yaml)| ### 4.SegFormer 系列 | 模型名称 | config | | :--- | :---: | | SegFormer-B0 | [SegFormer-B0.yaml](../../../paddlex/configs/semantic_segmentation/SegFormer-B0.yaml)| | SegFormer-B1 | [SegFormer-B1.yaml](../../../paddlex/configs/semantic_segmentation/SegFormer-B1.yaml)| | SegFormer-B2 | [SegFormer-B2.yaml](../../../paddlex/configs/semantic_segmentation/SegFormer-B2.yaml)| | SegFormer-B3 | [SegFormer-B3.yaml](../../../paddlex/configs/semantic_segmentation/SegFormer-B3.yaml)| | SegFormer-B4 | [SegFormer-B4.yaml](../../../paddlex/configs/semantic_segmentation/SegFormer-B4.yaml)| | SegFormer-B5 | [SegFormer-B5.yaml](../../../paddlex/configs/semantic_segmentation/SegFormer-B5.yaml)| ### 5.SeaFormer 系列 | 模型名称 | config | | :--- | :---: | | SeaFormer_tiny | [SeaFormer_tiny.yaml](../../../paddlex/configs/semantic_segmentation/SeaFormer_tiny.yaml)| | SeaFormer_small | [SeaFormer_small.yaml](../../../paddlex/configs/semantic_segmentation/SeaFormer_small.yaml)| | SeaFormer_base | [SeaFormer_base.yaml](../../../paddlex/configs/semantic_segmentation/SeaFormer_base.yaml)| | SeaFormer_large | [SeaFormer_large.yaml](../../../paddlex/configs/semantic_segmentation/SeaFormer_large.yaml)| ## 五、表格识别 | 模型名称 | config | | :--- | :---: | | SLANet | [SLANet.yaml](../../../paddlex/configs/table_recognition/SLANet.yaml)| ## 六、文本检测 ### 1.PP-OCRv4 系列 | 模型名称 | config | | :--- | :---: | | PP-OCRv4_server_det | [PP-OCRv4_server_det.yaml](../../../paddlex/configs/text_detection/PP-OCRv4_server_det.yaml)| | PP-OCRv4_mobile_det | [PP-OCRv4_mobile_det.yaml](../../../paddlex/configs/text_detection/PP-OCRv4_mobile_det.yaml)| ## 七、文本识别 ### 1.PP-OCRv4 系列 | 模型名称 | config | | :--- | :---: | | PP-OCRv4_server_rec | [PP-OCRv4_server_rec.yaml](../../../paddlex/configs/text_recognition/PP-OCRv4_server_rec.yaml)| | PP-OCRv4_mobile_rec | [PP-OCRv4_mobile_rec.yaml](../../../paddlex/configs/text_recognition/PP-OCRv4_mobile_rec.yaml)| ## 八、公式识别 | 模型名称 | config | | :--- | :---: | | LaTeX_OCR_rec | [LaTeX_OCR_rec.yml](../../../paddlex/configs/text_recognition/LaTeX_OCR_rec.yml)| ## 九、版面分析 | 模型名称 | config | | :--- | :---: | | PicoDet_layout_1x | [PicoDet_layout_1x.yaml](../../../paddlex/configs/structure_analysis/PicoDet_layout_1x.yaml)| ## 十、时序异常检测 | 模型名称 | config | | :--- | :---: | | DLinear_ad | [DLinear_ad.yaml](../../../paddlex/configs/ts_anomaly_detection/DLinear_ad.yaml)| | PatchTST_ad | [PatchTST_ad.yaml](../../../paddlex/configs/ts_anomaly_detection/PatchTST_ad.yaml)| | TimesNet_ad | [TimesNet_ad.yaml](../../../paddlex/configs/ts_anomaly_detection/TimesNet_ad.yaml)| | AutoEncoder_ad | [AutoEncoder_ad.yaml](../../../paddlex/configs/ts_anomaly_detection/AutoEncoder_ad.yaml)| | Nonstationary_ad | [Nonstationary_ad.yaml](../../../paddlex/configs/ts_anomaly_detection/Nonstationary_ad.yaml)| ## 十一、时序分类 | 模型名称 | config | | :--- | :---: | | TimesNet_cls | [TimesNet_cls.yaml](../../../paddlex/configs/ts_classification/TimesNet_cls.yaml)| ## 十二、时序预测 | 模型名称 | config | | :--- | :---: | | DLinear | [DLinear.yaml](../../../paddlex/configs/ts_forecast/DLinear.yaml)| | RLinear | [RLinear.yaml](../../../paddlex/configs/ts_forecast/RLinear.yaml)| | NLinear | [NLinear.yaml](../../../paddlex/configs/ts_forecast/NLinear.yaml)| | PatchTST | [PatchTST.yaml](../../../paddlex/configs/ts_forecast/PatchTST.yaml)| | TimesNet | [TimesNet.yaml](../../../paddlex/configs/ts_forecast/TimesNet.yaml)| | Nonstationary | [Nonstationary.yaml](../../../paddlex/configs/ts_forecast/Nonstationary.yaml)| | TiDE | [TiDE.yaml](../../../paddlex/configs/ts_forecast/TiDE.yaml)|