Global: model: OCRNet_HRNet-W48 mode: check_dataset # check_dataset/train/evaluate/predict dataset_dir: "/paddle/dataset/paddlex/seg/seg_optic_examples" device: gpu:0,1,2,3 output: "output" CheckDataset: convert: enable: False src_dataset_type: null split: enable: False train_percent: null val_percent: null Train: epochs_iters: 500 num_classes: 2 batch_size: 2 learning_rate: 0.01 pretrain_weight_path: null warmup_steps: 0 resume_path: null log_interval: 10 eval_interval: 100 Evaluate: weight_path: "output/best_model/model.pdparams" log_interval: 10 Export: weight_path: https://bj.bcebos.com/paddleseg/dygraph/cityscapes/ocrnet_hrnetw48_cityscapes_1024x512_160k/model.pdparams Predict: model_dir: "output/best_model/model" input_path: "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/general_semantic_segmentation_002.png" kernel_option: run_mode: paddle batch_size: 1