# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from functools import lru_cache import yaml from typing import Union from paddleseg.utils import NoAliasDumper from ..base_seg_config import BaseSegConfig from ....utils.misc import abspath from ....utils import logging class SegConfig(BaseSegConfig): """Semantic Segmentation Config""" def update_dataset(self, dataset_path: str, dataset_type: str = None): """update dataset settings Args: dataset_path (str): the root path of dataset. dataset_type (str, optional): dataset type. Defaults to None. Raises: ValueError: the dataset_type error. """ dataset_dir = abspath(dataset_path) if dataset_type is None: dataset_type = "SegDataset" if dataset_type == "SegDataset": # TODO: Prune extra keys ds_cfg = self._make_custom_dataset_config(dataset_dir) self.update(ds_cfg) elif dataset_type == "_dummy": # XXX: A special dataset type to tease PaddleSeg val dataset checkers self.update( { "val_dataset": { "type": "SegDataset", "dataset_root": dataset_dir, "val_path": os.path.join(dataset_dir, "val.txt"), "mode": "val", }, } ) else: raise ValueError(f"{repr(dataset_type)} is not supported.") def update_num_classes(self, num_classes: int): """update classes number Args: num_classes (int): the classes number value to set. """ if "train_dataset" in self: self.train_dataset["num_classes"] = num_classes if "val_dataset" in self: self.val_dataset["num_classes"] = num_classes if "model" in self: self.model["num_classes"] = num_classes def update_train_crop_size(self, crop_size: Union[int, list]): """update the image cropping size of training preprocessing Args: crop_size (int | list): the size of image to be cropped. Raises: ValueError: the `crop_size` error. """ # XXX: This method is highly coupled to PaddleSeg's internal functions if isinstance(crop_size, int): crop_size = [crop_size, crop_size] else: crop_size = list(crop_size) if len(crop_size) != 2: raise ValueError crop_size = [int(crop_size[0]), int(crop_size[1])] tf_cfg_list = self.train_dataset["transforms"] modified = False for tf_cfg in tf_cfg_list: if tf_cfg["type"] == "RandomPaddingCrop": tf_cfg["crop_size"] = crop_size modified = True if not modified: logging.warning( "Could not find configuration item of image cropping transformation operator. " "Therefore, the crop size was not updated." ) def get_epochs_iters(self) -> int: """get epochs Returns: int: the epochs value, i.e., `Global.epochs` in config. """ if "iters" in self: return self.iters else: # Default iters return 1000 def get_learning_rate(self) -> float: """get learning rate Returns: float: the learning rate value, i.e., `Optimizer.lr.learning_rate` in config. """ if "lr_scheduler" not in self or "learning_rate" not in self.lr_scheduler: # Default lr return 0.0001 else: return self.lr_scheduler["learning_rate"] def get_batch_size(self, mode="train") -> int: """get batch size Args: mode (str, optional): the mode that to be get batch size value, must be one of 'train', 'eval', 'test'. Defaults to 'train'. Raises: ValueError: the `mode` error. `train` is supported only. Returns: int: the batch size value of `mode`, i.e., `DataLoader.{mode}.sampler.batch_size` in config. """ if mode == "train": if "batch_size" in self: return self.batch_size else: # Default batch size return 4 else: raise ValueError( f"Getting `batch_size` in {repr(mode)} mode is not supported." ) def _make_custom_dataset_config(self, dataset_root_path: str) -> dict: """construct the dataset config that meets the format requirements Args: dataset_root_path (str): the root directory of dataset. Returns: dict: the dataset config. """ ds_cfg = { "train_dataset": { "type": "SegDataset", "dataset_root": dataset_root_path, "train_path": os.path.join(dataset_root_path, "train.txt"), "mode": "train", }, "val_dataset": { "type": "SegDataset", "dataset_root": dataset_root_path, "val_path": os.path.join(dataset_root_path, "val.txt"), "mode": "val", }, } return ds_cfg