# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import codecs import yaml from ....utils import logging from ...base.predictor.transforms import image_common from .transforms import SaveDetResults, PadStride, DetResize class InnerConfig(object): """Inner Config""" def __init__(self, config_path): self.inner_cfg = self.load(config_path) def load(self, config_path): """ load infer config """ with codecs.open(config_path, 'r', 'utf-8') as file: dic = yaml.load(file, Loader=yaml.FullLoader) return dic @property def pre_transforms(self): """ read preprocess transforms from config file """ tfs_cfg = self.inner_cfg["Preprocess"] tfs = [] for cfg in tfs_cfg: if cfg['type'] == 'NormalizeImage': mean = cfg.get('mean', 0.5) std = cfg.get('std', 0.5) scale = 1. / 255. if cfg.get('is_scale', True) else 1 norm_type = cfg.get('norm_type', "mean_std") if norm_type != "mean_std": mean = 0 std = 1 tf = image_common.Normalize(mean=mean, std=std, scale=scale) elif cfg['type'] == 'Resize': interp = cfg.get('interp', 'LINEAR') if isinstance(interp, int): interp = { 0: 'NEAREST', 1: 'LINEAR', 2: 'CUBIC', 3: 'AREA', 4: 'LANCZOS4' }[interp] tf = DetResize( target_hw=cfg['target_size'], keep_ratio=cfg.get('keep_ratio', True), interp=interp) elif cfg['type'] == 'Permute': tf = image_common.ToCHWImage() elif cfg['type'] == 'PadStride': stride = cfg.get('stride', 32) tf = PadStride(stride=stride) else: raise RuntimeError(f"Unsupported type: {cfg['type']}") tfs.append(tf) return tfs @property def labels(self): """ the labels in inner config """ return self.inner_cfg["label_list"]