# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Union, Tuple, List, Dict, Any, Iterator import os import inspect from abc import abstractmethod import lazy_paddle as paddle import numpy as np from ....utils.flags import FLAGS_json_format_model from ....utils import logging from ...utils.pp_option import PaddlePredictorOption class Copy2GPU: def __init__(self, input_handlers): super().__init__() self.input_handlers = input_handlers def __call__(self, x): for idx in range(len(x)): self.input_handlers[idx].reshape(x[idx].shape) self.input_handlers[idx].copy_from_cpu(x[idx]) class Copy2CPU: def __init__(self, output_handlers): super().__init__() self.output_handlers = output_handlers def __call__(self): output = [] for out_tensor in self.output_handlers: batch = out_tensor.copy_to_cpu() output.append(batch) return output class Infer: def __init__(self, predictor): super().__init__() self.predictor = predictor def __call__(self): self.predictor.run() class StaticInfer: """Predictor based on Paddle Inference""" def __init__( self, model_dir: str, model_prefix: str, option: PaddlePredictorOption ) -> None: super().__init__() self.model_dir = model_dir self.model_prefix = model_prefix self._update_option(option) def _update_option(self, option: PaddlePredictorOption) -> None: if self.option and option == self.option: return self._option = option self._reset() @property def option(self) -> PaddlePredictorOption: return self._option if hasattr(self, "_option") else None @option.setter def option(self, option: Union[None, PaddlePredictorOption]) -> None: if option: self._update_option(option) def _reset(self) -> None: if not self.option: self.option = PaddlePredictorOption() logging.debug(f"Env: {self.option}") ( predictor, input_handlers, output_handlers, ) = self._create() self.copy2gpu = Copy2GPU(input_handlers) self.copy2cpu = Copy2CPU(output_handlers) self.infer = Infer(predictor) self.option.changed = False def _create( self, ) -> Tuple[ paddle.base.libpaddle.PaddleInferPredictor, paddle.base.libpaddle.PaddleInferTensor, paddle.base.libpaddle.PaddleInferTensor, ]: """_create""" from lazy_paddle.inference import Config, create_predictor if FLAGS_json_format_model: model_file = (self.model_dir / f"{self.model_prefix}.json").as_posix() # when FLAGS_json_format_model is not set, use inference.json if exist, otherwise inference.pdmodel else: model_file = self.model_dir / f"{self.model_prefix}.json" if model_file.exists(): model_file = model_file.as_posix() # default by `pdmodel` suffix else: model_file = ( self.model_dir / f"{self.model_prefix}.pdmodel" ).as_posix() params_file = (self.model_dir / f"{self.model_prefix}.pdiparams").as_posix() config = Config(model_file, params_file) config.enable_memory_optim() if self.option.device in ("gpu", "dcu"): if self.option.device == "gpu": config.exp_disable_mixed_precision_ops({"feed", "fetch"}) config.enable_use_gpu(100, self.option.device_id) if self.option.device == "gpu": # NOTE: The pptrt settings are not aligned with those of FD. precision_map = { "trt_int8": Config.Precision.Int8, "trt_fp32": Config.Precision.Float32, "trt_fp16": Config.Precision.Half, } if self.option.run_mode in precision_map.keys(): config.enable_tensorrt_engine( workspace_size=(1 << 25) * self.option.batch_size, max_batch_size=self.option.batch_size, min_subgraph_size=self.option.min_subgraph_size, precision_mode=precision_map[self.option.run_mode], use_static=self.option.trt_use_static, use_calib_mode=self.option.trt_calib_mode, ) if self.option.shape_info_filename is not None: if not os.path.exists(self.option.shape_info_filename): config.collect_shape_range_info( self.option.shape_info_filename ) logging.info( f"Dynamic shape info is collected into: {self.option.shape_info_filename}" ) else: logging.info( f"A dynamic shape info file ( {self.option.shape_info_filename} ) already exists. \ No need to generate again." ) config.enable_tuned_tensorrt_dynamic_shape( self.option.shape_info_filename, True ) elif self.option.device == "npu": config.enable_custom_device("npu") elif self.option.device == "xpu": pass elif self.option.device == "mlu": config.enable_custom_device("mlu") else: assert self.option.device == "cpu" config.disable_gpu() if "mkldnn" in self.option.run_mode: try: config.enable_mkldnn() if "bf16" in self.option.run_mode: config.enable_mkldnn_bfloat16() except Exception as e: logging.warning( "MKL-DNN is not available. We will disable MKL-DNN." ) config.set_mkldnn_cache_capacity(-1) else: if hasattr(config, "disable_mkldnn"): config.disable_mkldnn() # Disable paddle inference logging config.disable_glog_info() config.set_cpu_math_library_num_threads(self.option.cpu_threads) if self.option.device in ("cpu", "gpu"): if not ( self.option.device == "gpu" and self.option.run_mode.startswith("trt") ): if hasattr(config, "enable_new_ir"): config.enable_new_ir(self.option.enable_new_ir) if hasattr(config, "enable_new_executor"): config.enable_new_executor() config.set_optimization_level(3) for del_p in self.option.delete_pass: config.delete_pass(del_p) if self.option.device in ("gpu", "dcu"): if paddle.is_compiled_with_rocm(): # Delete unsupported passes in dcu config.delete_pass("conv2d_add_act_fuse_pass") config.delete_pass("conv2d_add_fuse_pass") predictor = create_predictor(config) # Get input and output handlers input_names = predictor.get_input_names() input_names.sort() input_handlers = [] output_handlers = [] for input_name in input_names: input_handler = predictor.get_input_handle(input_name) input_handlers.append(input_handler) output_names = predictor.get_output_names() for output_name in output_names: output_handler = predictor.get_output_handle(output_name) output_handlers.append(output_handler) return predictor, input_handlers, output_handlers def __call__(self, x) -> List[Any]: if self.option.changed: self._reset() self.copy2gpu(x) self.infer() pred = self.copy2cpu() return pred @property def benchmark(self): return { "Copy2GPU": self.copy2gpu, "Infer": self.infer, "Copy2CPU": self.copy2cpu, }