# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import logging import os import shutil import unicodedata from functools import lru_cache from typing import List, Optional from .tokenizer_utils import ( PretrainedTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from .tokenizer_utils_base import AddedToken __all__ = ["CLIPTokenizer"] @lru_cache() def bytes_to_unicode(): """ Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control characters the bpe code barfs on. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. """ bs = ( list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) ) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8 + n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): """ Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs def whitespace_clean(text, re): text = re.sub(r"\s+", " ", text) text = text.strip() return text def whitespace_tokenize(text): """Runs basic whitespace cleaning and splitting on a piece of text.""" text = text.strip() if not text: return [] tokens = text.split() return tokens # Copied from transformers.models.bert.tokenization_bert.BasicTokenizer class BasicTokenizer(object): """ Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.). Args: do_lower_case (`bool`, *optional*, defaults to `True`): Whether or not to lowercase the input when tokenizing. never_split (`Iterable`, *optional*): Collection of tokens which will never be split during tokenization. Only has an effect when `do_basic_tokenize=True` tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this [issue](https://github.com/huggingface/transformers/issues/328)). strip_accents (`bool`, *optional*): Whether or not to strip all accents. If this option is not specified, then it will be determined by the value for `lowercase` (as in the original BERT). do_split_on_punc (`bool`, *optional*, defaults to `True`): In some instances we want to skip the basic punctuation splitting so that later tokenization can capture the full context of the words, such as contractions. """ def __init__( self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None, do_split_on_punc=True, ): if never_split is None: never_split = [] self.do_lower_case = do_lower_case self.never_split = set(never_split) self.tokenize_chinese_chars = tokenize_chinese_chars self.strip_accents = strip_accents self.do_split_on_punc = do_split_on_punc def tokenize(self, text, never_split=None): """ Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer. Args: never_split (`List[str]`, *optional*) Kept for backward compatibility purposes. Now implemented directly at the base class level (see [`PreTrainedTokenizer.tokenize`]) List of token not to split. """ # union() returns a new set by concatenating the two sets. never_split = ( self.never_split.union(set(never_split)) if never_split else self.never_split ) text = self._clean_text(text) # This was added on November 1st, 2018 for the multilingual and Chinese # models. This is also applied to the English models now, but it doesn't # matter since the English models were not trained on any Chinese data # and generally don't have any Chinese data in them (there are Chinese # characters in the vocabulary because Wikipedia does have some Chinese # words in the English Wikipedia.). if self.tokenize_chinese_chars: text = self._tokenize_chinese_chars(text) # prevents treating the same character with different unicode codepoints as different characters unicode_normalized_text = unicodedata.normalize("NFC", text) orig_tokens = whitespace_tokenize(unicode_normalized_text) split_tokens = [] for token in orig_tokens: if token not in never_split: if self.do_lower_case: token = token.lower() if self.strip_accents is not False: token = self._run_strip_accents(token) elif self.strip_accents: token = self._run_strip_accents(token) split_tokens.extend(self._run_split_on_punc(token, never_split)) output_tokens = whitespace_tokenize(" ".join(split_tokens)) return output_tokens def _run_strip_accents(self, text): """Strips accents from a piece of text.""" text = unicodedata.normalize("NFD", text) output = [] for char in text: cat = unicodedata.category(char) if cat == "Mn": continue output.append(char) return "".join(output) def _run_split_on_punc(self, text, never_split=None): """Splits punctuation on a piece of text.""" if not self.do_split_on_punc or ( never_split is not None and text in never_split ): return [text] chars = list(text) i = 0 start_new_word = True output = [] while i < len(chars): char = chars[i] if _is_punctuation(char): output.append([char]) start_new_word = True else: if start_new_word: output.append([]) start_new_word = False output[-1].append(char) i += 1 return ["".join(x) for x in output] def _tokenize_chinese_chars(self, text): """Adds whitespace around any CJK character.""" output = [] for char in text: cp = ord(char) if self._is_chinese_char(cp): output.append(" ") output.append(char) output.append(" ") else: output.append(char) return "".join(output) def _is_chinese_char(self, cp): """Checks whether CP is the codepoint of a CJK character.""" # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x20000 and cp <= 0x2A6DF) # or (cp >= 0x2A700 and cp <= 0x2B73F) # or (cp >= 0x2B740 and cp <= 0x2B81F) # or (cp >= 0x2B820 and cp <= 0x2CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2F800 and cp <= 0x2FA1F) # ): # return True return False def _clean_text(self, text): """Performs invalid character removal and whitespace cleanup on text.""" output = [] for char in text: cp = ord(char) if cp == 0 or cp == 0xFFFD or _is_control(char): continue if _is_whitespace(char): output.append(" ") else: output.append(char) return "".join(output) class CLIPTokenizer(PretrainedTokenizer): r""" Construct a CLIP tokenizer based on byte-level Byte-Pair-Encoding. This tokenizer inherits from :class:`~paddlenlp.transformers.gpt.tokenizer.GPTTokenizer`. For more information regarding those methods, please refer to this superclass. Args: vocab_file (str): Path to the vocabulary file. The vocab file contains a mapping from vocabulary strings to indices. merges_file (str): Path to the merge file. The merge file is used to split the input sentence into "subword" units. The vocab file is then used to encode those units as intices. errors (str): Paradigm to follow when decoding bytes to UTF-8. Defaults to `'replace'`. max_len (int, optional): The maximum value of the input sequence length. Defaults to `77`. bos_token (str, optional): The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. Defaults to `"<|startoftext|>"`. eos_token (str, optional): A special token representing the end of a sequence that was used during pretraining. Defaults to `"<|endoftext|>"`. unk_token (str, optional): A special token representing the *unknown (out-of-vocabulary)* token. An unknown token is set to be `unk_token` inorder to be converted to an ID. Defaults to `"<|endoftext|>"`. pad_token (str, optional): A special token used to make arrays of tokens the same size for batching purposes. Defaults to `"<|endoftext|>"`. Examples: .. code-block:: from paddlenlp.transformers import AutoTokenizer tokenizer = AutoTokenizer.from_pretrained('openai/clip-vit-base-patch32') print(tokenizer('He was a puppeteer')) ''' {'input_ids': [49406, 797, 739, 320, 7116, 38820, 528, 49407]} ''' """ # merges and vocab same as GPT2 resource_files_names = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} pretrained_resource_files_map = {"vocab_file": {}, "merges_file": {}} pretrained_init_configuration = {} model_input_names = [ "input_ids", "attention_mask", ] def __init__( self, vocab_file, merges_file, errors="replace", max_len=77, bos_token="<|startoftext|>", eos_token="<|endoftext|>", unk_token="<|endoftext|>", pad_token="<|endoftext|>", **kwargs ): from paddle.utils import try_import bos_token = ( AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token ) eos_token = ( AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token ) unk_token = ( AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token ) pad_token = ( AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token ) self._build_special_tokens_map_extended( bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, pad_token=pad_token, ) try: import ftfy self.fix_text = ftfy.fix_text except ImportError: logging.info( "ftfy or spacy is not installed using custom BasicTokenizer instead of ftfy." ) self.nlp = BasicTokenizer( strip_accents=False, do_split_on_punc=False, do_lower_case=True ) self.fix_text = None self.re = try_import("regex") self._vocab_file = vocab_file self._merges_file = merges_file self.max_len = max_len if max_len is not None else int(1e12) with open(vocab_file, encoding="utf-8") as vocab_handle: self.encoder = json.load(vocab_handle) self.decoder = {v: k for k, v in self.encoder.items()} self.errors = errors # how to handle errors in decoding self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} with open(merges_file, encoding="utf-8") as merges_handle: bpe_merges = ( merges_handle.read().strip().split("\n")[1 : 49152 - 256 - 2 + 1] ) bpe_merges = [tuple(merge.split()) for merge in bpe_merges] self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) self.cache = { "<|startoftext|>": "<|startoftext|>", "<|endoftext|>": "<|endoftext|>", } self.pat = self.re.compile( r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", self.re.IGNORECASE, ) @property def vocab_size(self): """ Returns the size of vocabulary. Returns: int: The sum of size of vocabulary and the size of speical tokens. """ return len(self.encoder) def get_vocab(self): return dict(self.encoder, **self.added_tokens_encoder) def build_inputs_with_special_tokens( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A CLIP sequence has the following format: - single sequence: `<|startoftext|> X <|endoftext|>` Pairs of sequences are not the expected use case, but they will be handled without a separator. Args: token_ids_0 (`List[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of input IDs with the appropriate special tokens. """ bos_token = [self.bos_token_id] eos_token = [self.eos_token_id] if token_ids_1 is None: return bos_token + token_ids_0 + eos_token return bos_token + token_ids_0 + eos_token + eos_token + token_ids_1 + eos_token def build_offset_mapping_with_special_tokens( self, offset_mapping_0, offset_mapping_1=None ): """ Build offset map from a pair of offset map by concatenating and adding offsets of special tokens. Should be overridden in a subclass if the model has a special way of building those. Args: offset_mapping_0 (List[tuple]): List of char offsets to which the special tokens will be added. offset_mapping_1 (List[tuple], optional): Optional second list of char offsets for offset mapping pairs. Returns: List[tuple]: List of char offsets with the appropriate offsets of special tokens. """ if offset_mapping_1 is None: return [(0, 0)] + offset_mapping_0 + [(0, 0)] return ( [(0, 0)] + offset_mapping_0 + [(0, 0), (0, 0)] + offset_mapping_1 + [(0, 0)] ) def get_special_tokens_mask( self, token_ids_0, token_ids_1=None, already_has_special_tokens=False ): """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True, ) if token_ids_1 is None: return [1] + ([0] * len(token_ids_0)) + [1] return ( [1] + ([0] * len(token_ids_0)) + [1] + [1] + ([0] * len(token_ids_1)) + [1] ) def create_token_type_ids_from_sequences( self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None ) -> List[int]: """ Create a mask from the two sequences passed. CLIP does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`List[int]`): List of IDs. token_ids_1 (`List[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `List[int]`: List of zeros. """ bos_token = [self.bos_token_id] eos_token = [self.eos_token_id] if token_ids_1 is None: return len(bos_token + token_ids_0 + eos_token) * [0] return len( bos_token + token_ids_0 + eos_token + eos_token + token_ids_1 + eos_token ) * [0] def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token[:-1]) + (token[-1] + "",) pairs = get_pairs(word) if not pairs: return token + "" while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf"))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) i = j if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = " ".join(word) self.cache[token] = word return word def _tokenize(self, text): """Tokenize a string.""" bpe_tokens = [] if self.fix_text is None: text = " ".join(self.nlp.tokenize(text)) else: text = whitespace_clean(self.fix_text(text), self.re).lower() for token in self.re.findall(self.pat, text): token = "".join( self.byte_encoder[b] for b in token.encode("utf-8") ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" ")) return bpe_tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" return self.encoder.get(token, self.encoder.get(self.unk_token)) def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" return self.decoder.get(index) def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" text = "".join(tokens) byte_array = bytearray([self.byte_decoder[c] for c in text]) text = ( byte_array.decode("utf-8", errors=self.errors).replace("", " ").strip() ) return text def save_resources(self, save_directory): """ Saves `SentencePiece `__ file (ends with '.spm') under `save_directory`. Args: save_directory (str): Directory to save files into. """ for name, file_name in self.resource_files_names.items(): source_path = getattr(self, "_%s" % name) save_path = os.path.join(save_directory, file_name) if os.path.abspath(source_path) != os.path.abspath(save_path): shutil.copyfile(source_path, save_path)