# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ...utils import logging from ..base import BaseTrainer from .model_list import MODELS class DetTrainer(BaseTrainer): """Object Detection Model Trainer""" entities = MODELS def _update_dataset(self): """update dataset settings""" metric = self.pdx_config.metric if "metric" in self.pdx_config else "COCO" data_fields = ( self.pdx_config.TrainDataset["data_fields"] if "data_fields" in self.pdx_config.TrainDataset else None ) self.pdx_config.update_dataset( self.global_config.dataset_dir, "COCODetDataset", data_fields=data_fields, metric=metric, ) def update_config(self): """update training config""" if self.train_config.log_interval: self.pdx_config.update_log_interval(self.train_config.log_interval) if self.train_config.eval_interval: self.pdx_config.update_eval_interval(self.train_config.eval_interval) self._update_dataset() if self.train_config.num_classes is not None: self.pdx_config.update_num_class(self.train_config.num_classes) if ( self.train_config.pretrain_weight_path and self.train_config.pretrain_weight_path != "" ): self.pdx_config.update_pretrained_weights( self.train_config.pretrain_weight_path ) if self.train_config.batch_size is not None: self.pdx_config.update_batch_size(self.train_config.batch_size) if self.train_config.learning_rate is not None: self.pdx_config.update_learning_rate(self.train_config.learning_rate) if self.train_config.epochs_iters is not None: self.pdx_config.update_epochs(self.train_config.epochs_iters) epochs_iters = self.train_config.epochs_iters else: epochs_iters = self.pdx_config.get_epochs_iters() if self.train_config.warmup_steps is not None: self.pdx_config.update_warmup_steps(self.train_config.warmup_steps) if self.global_config.output is not None: self.pdx_config.update_save_dir(self.global_config.output) if "PicoDet" in self.global_config.model: assigner_epochs = max(int(epochs_iters / 10), 1) try: self.pdx_config.update_static_assigner_epochs(assigner_epochs) except Exception: logging.info( f"The model({self.global_config.model}) don't support to update_static_assigner_epochs!" ) def get_train_kwargs(self) -> dict: """get key-value arguments of model training function Returns: dict: the arguments of training function. """ train_args = {"device": self.get_device()} if ( self.train_config.resume_path is not None and self.train_config.resume_path != "" ): train_args["resume_path"] = self.train_config.resume_path train_args["dy2st"] = self.train_config.get("dy2st", False) return train_args