# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import shutil from pathlib import Path from ..base import BaseTrainer from .model_list import MODELS class VideoClsTrainer(BaseTrainer): """Image Classification Model Trainer""" entities = MODELS def dump_label_dict(self, src_label_dict_path: str): """dump label dict config Args: src_label_dict_path (str): path to label dict file to be saved. """ dst_label_dict_path = Path(self.global_config.output).joinpath("label_dict.txt") shutil.copyfile(src_label_dict_path, dst_label_dict_path) def update_config(self): """update training config""" if self.train_config.log_interval: self.pdx_config.update_log_interval(self.train_config.log_interval) if self.train_config.eval_interval: self.pdx_config.update_eval_interval(self.train_config.eval_interval) if self.train_config.save_interval: self.pdx_config.update_save_interval(self.train_config.save_interval) self.pdx_config.update_dataset( self.global_config.dataset_dir, "VideoClsDataset" ) if self.train_config.num_classes is not None: self.pdx_config.update_num_classes(self.train_config.num_classes) if self.train_config.pretrain_weight_path != "": self.pdx_config.update_pretrained_weights( self.train_config.pretrain_weight_path ) label_dict_path = Path(self.global_config.dataset_dir).joinpath("label.txt") if label_dict_path.exists(): self.dump_label_dict(label_dict_path) if self.train_config.batch_size is not None: self.pdx_config.update_batch_size( self.train_config.batch_size, mode="train" ) if self.eval_config.batch_size is not None: self.pdx_config.update_batch_size(self.eval_config.batch_size, mode="eval") if self.train_config.learning_rate is not None: self.pdx_config.update_learning_rate(self.train_config.learning_rate) if self.train_config.epochs_iters is not None: self.pdx_config._update_epochs(self.train_config.epochs_iters) if self.train_config.warmup_steps is not None: self.pdx_config.update_warmup_epochs(self.train_config.warmup_steps) if self.global_config.output is not None: self.pdx_config._update_output_dir(self.global_config.output) def get_train_kwargs(self) -> dict: """get key-value arguments of model training function Returns: dict: the arguments of training function. """ train_args = {"device": self.get_device()} if ( self.train_config.resume_path is not None and self.train_config.resume_path != "" ): train_args["resume_path"] = self.train_config.resume_path train_args["dy2st"] = self.train_config.get("dy2st", False) return train_args