# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Union, Dict, List, Tuple import numpy as np from ....utils.func_register import FuncRegister from ....modules.anomaly_detection.model_list import MODELS from ...common.batch_sampler import ImageBatchSampler from ...common.reader import ReadImage from ..common import ( Resize, ResizeByShort, Normalize, ToCHWImage, ToBatch, StaticInfer, ) from .processors import MapToMask from ..base import BasicPredictor from .result import UadResult class UadPredictor(BasicPredictor): """UadPredictor that inherits from BasicPredictor.""" entities = MODELS _FUNC_MAP = {} register = FuncRegister(_FUNC_MAP) def __init__(self, *args: List, **kwargs: Dict) -> None: """Initializes UadPredictor. Args: *args: Arbitrary positional arguments passed to the superclass. **kwargs: Arbitrary keyword arguments passed to the superclass. """ super().__init__(*args, **kwargs) self.preprocessors, self.infer, self.postprocessors = self._build() def _build_batch_sampler(self) -> ImageBatchSampler: """Builds and returns an ImageBatchSampler instance. Returns: ImageBatchSampler: An instance of ImageBatchSampler. """ return ImageBatchSampler() def _get_result_class(self) -> type: """Returns the result class, UadResult. Returns: type: The UadResult class. """ return UadResult def _build(self) -> Tuple: """Build the preprocessors, inference engine, and postprocessors based on the configuration. Returns: tuple: A tuple containing the preprocessors, inference engine, and postprocessors. """ preprocessors = {"Read": ReadImage(format="RGB")} preprocessors["ToCHW"] = ToCHWImage() for cfg in self.config["Deploy"]["transforms"]: tf_key = cfg.pop("type") func = self._FUNC_MAP[tf_key] args = cfg name, op = func(self, **args) if args else func(self) preprocessors[name] = op preprocessors["ToBatch"] = ToBatch() infer = StaticInfer( model_dir=self.model_dir, model_prefix=self.MODEL_FILE_PREFIX, option=self.pp_option, ) postprocessors = {"Map_to_mask": MapToMask()} return preprocessors, infer, postprocessors def process(self, batch_data: List[Union[str, np.ndarray]]) -> Dict[str, Any]: """ Process a batch of data through the preprocessing, inference, and postprocessing. Args: batch_data (List[Union[str, np.ndarray], ...]): A batch of input data (e.g., image file paths). Returns: dict: A dictionary containing the input path, raw image, and predicted segmentation maps for every instance of the batch. Keys include 'input_path', 'input_img', and 'pred'. """ batch_raw_imgs = self.preprocessors["Read"](imgs=batch_data.instances) batch_imgs = self.preprocessors["Resize"](imgs=batch_raw_imgs) batch_imgs = self.preprocessors["Normalize"](imgs=batch_imgs) batch_imgs = self.preprocessors["ToCHW"](imgs=batch_imgs) x = self.preprocessors["ToBatch"](imgs=batch_imgs) batch_preds = self.infer(x=x) batch_preds = self.postprocessors["Map_to_mask"](preds=batch_preds) if len(batch_data) > 1: batch_preds = np.split(batch_preds[0], len(batch_data), axis=0) return { "input_path": batch_data.input_paths, "page_index": batch_data.page_indexes, "input_img": batch_raw_imgs, "pred": batch_preds, } @register("Resize") def build_resize( self, target_size, keep_ratio=False, size_divisor=None, interp="LINEAR" ): assert target_size op = Resize( target_size=target_size, keep_ratio=keep_ratio, size_divisor=size_divisor, interp=interp, ) return "Resize", op @register("Normalize") def build_normalize( self, mean=0.5, std=0.5, ): op = Normalize(mean=mean, std=std) return "Normalize", op @register("Map_to_mask") def map_to_mask(self, mask_map): op = MapToMask() return "Map_to_mask", op