# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddlex import create_pipeline pipeline = create_pipeline(pipeline="OCR", limit_side_len=320) output = pipeline.predict( "./test_samples/general_ocr_002.png", use_doc_orientation_classify=True, use_doc_unwarping=False, use_textline_orientation=False, unclip_ratio=3.0, limit_side_len=1920, ) # output = pipeline.predict( # "./test_samples/general_ocr_002.png", # use_doc_orientation_classify=True, # use_doc_unwarping=True, # use_textline_orientation=False, # ) # output = pipeline.predict( # "./test_samples/general_ocr_002.png", # use_doc_orientation_classify=True, # use_doc_unwarping=False, # use_textline_orientation=True, # ) # output = pipeline.predict( # "./test_samples/general_ocr_002.png", # use_doc_orientation_classify=True, # use_doc_unwarping=False, # use_textline_orientation=False, # ) # output = pipeline.predict( # "./test_samples/general_ocr_002.png", # use_doc_orientation_classify=False, # use_doc_unwarping=True, # use_textline_orientation=True, # ) # output = pipeline.predict( # "./test_samples/general_ocr_002.png", # use_doc_orientation_classify=False, # use_doc_unwarping=True, # use_textline_orientation=False, # ) # output = pipeline.predict( # "./test_samples/general_ocr_002.png", # use_doc_orientation_classify=False, # use_doc_unwarping=False, # use_textline_orientation=True, # ) # output = pipeline.predict( # "./test_samples/general_ocr_002.png", # use_doc_orientation_classify=False, # use_doc_unwarping=False, # use_textline_orientation=False, # ) # output = pipeline.predict("./test_samples/财报1.pdf") for res in output: print(res) res.save_to_img("./output") res.save_to_json("./output/res.json")