--- comments: true --- # Face Feature Module Usage Tutorial ## I. Overview Face feature models typically take standardized face images processed through detection, extraction, and keypoint correction as input. These models extract highly discriminative facial features from these images for subsequent modules, such as face matching and verification tasks. ## II. Supported Model List > The inference time only includes the model inference time and does not include the time for pre- or post-processing.
ModelModel Download Link Output Feature Dimension Acc (%)
AgeDB-30/CFP-FP/LFW
GPU Inference Time (ms)
[Normal Mode / High-Performance Mode]
CPU Inference Time (ms)
[Normal Mode / High-Performance Mode]
Model Storage Size (MB) Description
MobileFaceNet Inference Model/Training Model 128 96.28/96.71/99.58 3.31 / 0.73 5.93 / 1.30 4.1 Face feature model trained on MobileFaceNet with MS1Mv3 dataset
ResNet50_face Inference Model/Training Model 512 98.12/98.56/99.77 6.12 / 3.11 15.85 / 9.44 87.2 Face feature model trained on ResNet50 with MS1Mv3 dataset
Test Environment Description:
Mode GPU Configuration CPU Configuration Acceleration Technology Combination
Normal Mode FP32 Precision / No TRT Acceleration FP32 Precision / 8 Threads PaddleInference
High-Performance Mode Optimal combination of pre-selected precision types and acceleration strategies FP32 Precision / 8 Threads Pre-selected optimal backend (Paddle/OpenVINO/TRT, etc.)
## III. Quick Integration > ❗ Before quick integration, please install the PaddleX wheel package. For details, refer to the [PaddleX Local Installation Tutorial](../../../installation/installation.en.md) After installing the whl package, a few lines of code can complete the inference of the face feature module. You can switch models under this module freely, and you can also integrate the model inference of the face feature module into your project. Before running the following code, please download the [example image](https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/face_recognition_001.jpg) to your local machine. ```python from paddlex import create_model model_name = "MobileFaceNet" model = create_model(model_name) output = model.predict("face_recognition_001.jpg", batch_size=1) for res in output: res.print(json_format=False) res.save_to_json("./output/res.json") ```
πŸ‘‰ The result obtained after running is: (Click to expand) ```bash {'res': {'input_path': 'face_recognition_001.jpg', 'feature': [0.04121152311563492, 0.0010890548583120108, -0.03561094403266907, 0.05722084641456604, 0.05919725075364113, -0.007132374215871096, -0.061298906803131104, -0.10843975096940994, -0.02871585637331009, 0.03347175195813179, 0.13309064507484436, 0.05309445410966873, 0.004820522852241993, -0.11700531840324402, 0.03240801766514778, 0.0639009103178978, 0.17841649055480957, 0.006999856326729059, -0.052513156086206436, 0.14528249204158783, 0.013314608484506607, -0.04820159450173378, -0.04795005917549133, 0.184268519282341, -0.15508289635181427, -0.01048946287482977, -0.103487029671669, 0.020606128498911858, 0.11970002949237823, 0.07393684983253479, -0.05581602826714516, -0.10253427177667618, -0.015256273560225964, 0.06347685307264328, 0.0893929973244667, -0.01050905603915453, -0.025690989568829536, -0.10570172965526581, -0.11608698219060898, -0.04072513058781624, 0.05093423277139664, 0.044215817004442215, 0.1629297435283661, -0.06339056044816971, -0.07671815156936646, 0.09480706602334976, -0.15456975996494293, -0.021657753735780716, 0.12482058256864548, -0.1267298310995102, 0.002465370809659362, -0.05374367907643318, -0.07079283148050308, 0.1325870305299759, -0.006946612149477005, 0.047657083719968796, 0.06102422997355461, -0.18113569915294647, -0.15677541494369507, -0.05817852169275284, -0.007711497135460377, -0.03407919406890869, 0.04798268899321556, -0.036309171468019485, 0.10679583996534348, -0.1858624368906021, -0.06799137592315674, 0.008694482035934925, 0.026530278846621513, -0.06917411088943481, 0.13533912599086761, -0.08762945234775543, -0.17223820090293884, -0.024798616766929626, -0.03390877693891525, -0.17003266513347626, -0.08045653998851776, -0.21928688883781433, -0.08328460901975632, 0.0745469480752945, -0.05523530766367912, -0.08471746742725372, -0.06595447659492493, 0.11475134640932083, 0.12401033192873001, 0.09317877888679504, -0.08352484554052353, 0.0247682835906744, 0.0008310621487908065, -0.09977596998214722, -0.002699024509638548, -0.23338164389133453, -0.1783595234155655, -0.08259879052639008, 0.14328709244728088, 0.024862702935934067, 0.008164866827428341, 0.06340813636779785, 0.1028614193201065, -0.038397643715143204, -0.05210508778691292, 0.0389365553855896, 0.12757952511310577, 0.05326246842741966, 0.06695418804883957, -0.0052042435854673386, 0.035264499485492706, 0.00990584772080183, -0.05249840393662453, 0.06972697377204895, -0.06477969884872437, -0.003332878928631544, 0.0449349470436573, 0.020609190687537193, 0.074540875852108, -0.03608720749616623, 0.04876900464296341, -0.06063542515039444, -0.07829384505748749, -0.1220116913318634, 0.05064597725868225, 0.07839702069759369, 0.06130668520927429, -0.13095220923423767, 0.0888662114739418, -0.029464716091752052, 0.030264943838119507, 0.04124804586172104]}} ``` Parameter meanings are as follows: - `input_path`: The path of the input image to be predicted. - `feature`: The feature vector extracted by the model.
The explanations for the methods, parameters, etc., are as follows: * `create_model` instantiates a face feature model (here, `MobileFaceNet` is used as an example), and the specific explanations are as follows:
Parameter Parameter Description Parameter Type Options Default Value
model_name Name of the model str None None
model_dir Path to store the model str None None
device The device used for model inference str It supports specifying specific GPU card numbers, such as "gpu:0", other hardware card numbers, such as "npu:0", or CPU, such as "cpu". gpu:0
flip Whether to perform flipped inference; if True, the model will infer the horizontally flipped input image and fuse the results of both inferences to improve the accuracy of face features bool None False
use_hpip Whether to enable the high-performance inference plugin bool None False
hpi_config High-performance inference configuration dict | None None None
* The `model_name` must be specified. After specifying `model_name`, the default model parameters built into PaddleX are used. If `model_dir` is specified, the user-defined model is used. * The `predict()` method of the face feature model is called for inference prediction. The `predict()` method has parameters `input` and `batch_size`, which are explained as follows:
Parameter Parameter Description Parameter Type Options Default Value
input Data to be predicted, supporting multiple input types Python Var/str/list
  • Python Variable, such as image data represented by numpy.ndarray
  • File Path, such as the local path of an image file: /root/data/img.jpg
  • URL Link, such as the web URL of an image file: Example
  • Local Directory, the directory should contain the data files to be predicted, such as the local path: /root/data/
  • List, the elements of the list should be of the above-mentioned data types, such as [numpy.ndarray, numpy.ndarray], [\"/root/data/img1.jpg\", \"/root/data/img2.jpg\"], [\"/root/data1\", \"/root/data2\"]
None
batch_size Batch size int Any integer 1
* The prediction results are processed, and the prediction result for each sample is of type `dict`. It supports operations such as printing, saving as an image, and saving as a `json` file:
Method Method Description Parameter Parameter Type Parameter Description Default Value
print() Print the results to the terminal format_json bool Whether to format the output content using JSON indentation True
indent int Specify the indentation level to beautify the output JSON data, making it more readable, only effective when format_json is True 4
ensure_ascii bool Control whether to escape non-ASCII characters to Unicode. If set to True, all non-ASCII characters will be escaped; False retains the original characters, only effective when format_json is True False
save_to_json() Save the results as a JSON file save_path str The path to save the file. If it is a directory, the saved file name will be consistent with the input file name None
indent int Specify the indentation level to beautify the output JSON data, making it more readable, only effective when format_json is True 4
ensure_ascii bool Control whether to escape non-ASCII characters to Unicode. If set to True, all non-ASCII characters will be escaped; False retains the original characters, only effective when format_json is True False
* Additionally, it supports obtaining the prediction results through attributes, as follows:
Attribute Attribute Description
json Get the prediction result in json format
For more information on using the PaddleX single-model inference API, refer to the [PaddleX Single Model Python Script Usage Instructions](../../instructions/model_python_API.en.md). ## IV. Custom Development If you aim for higher accuracy with existing models, you can leverage PaddleX's custom development capabilities to develop better face feature models. Before developing face feature models with PaddleX, ensure you have installed the PaddleX PaddleClas plugin. The installation process can be found in the [PaddleX Local Installation Tutorial](../../../installation/installation.en.md) ### 4.1 Data Preparation Before model training, you need to prepare the dataset for the corresponding task module. PaddleX provides data validation functionality for each module, and only data that passes validation can be used for model training. Additionally, PaddleX provides demo datasets for each module, allowing you to complete subsequent development based on the official demo data. If you wish to use a private dataset for subsequent model training, the training dataset for the face feature module is organized in a general image classification dataset format. You can refer to the [PaddleX Image Classification Task Module Data Annotation Tutorial](../../../data_annotations/cv_modules/image_classification.en.md). If you wish to use a private dataset for subsequent model evaluation, note that the validation dataset format for the face feature module differs from the training dataset format. Please refer to [Section 4.1.4 Data Organization Face Feature Module](#414-Data-Organization-for-Face-Feature-Module) #### 4.1.1 Demo Data Download You can use the following commands to download the demo dataset to a specified folder: ```bash cd /path/to/paddlex wget https://paddle-model-ecology.bj.bcebos.com/paddlex/data/face_rec_examples.tar -P ./dataset tar -xf ./dataset/face_rec_examples.tar -C ./dataset/ ``` #### 4.1.2 Data Validation A single command can complete data validation: ```bash python main.py -c paddlex/configs/modules/face_feature/MobileFaceNet.yaml \ -o Global.mode=check_dataset \ -o Global.dataset_dir=./dataset/face_rec_examples ``` After executing the above command, PaddleX will validate the dataset and collect its basic information. Upon successful execution, the log will print the message `Check dataset passed !`. The validation result file will be saved in `./output/check_dataset_result.json`, and related outputs will be saved in the `./output/check_dataset` directory of the current directory. The output directory includes visualized example images and histograms of sample distributions.
πŸ‘‰ Validation Result Details (Click to Expand)

The specific content of the validation result file is:

{
  "done_flag": true,
  "check_pass": true,
  "attributes": {
    "train_label_file": "../../dataset/face_rec_examples/train/label.txt",
    "train_num_classes": 995,
    "train_samples": 1000,
    "train_sample_paths": [
      "check_dataset/demo_img/01378592.jpg",
      "check_dataset/demo_img/04331410.jpg",
      "check_dataset/demo_img/03485713.jpg",
      "check_dataset/demo_img/02382123.jpg",
      "check_dataset/demo_img/01722397.jpg",
      "check_dataset/demo_img/02682349.jpg",
      "check_dataset/demo_img/00272794.jpg",
      "check_dataset/demo_img/03151987.jpg",
      "check_dataset/demo_img/01725764.jpg",
      "check_dataset/demo_img/02580369.jpg"
    ],
    "val_label_file": "../../dataset/face_rec_examples/val/pair_label.txt",
    "val_num_classes": 2,
    "val_samples": 500,
    "val_sample_paths": [
      "check_dataset/demo_img/Don_Carcieri_0001.jpg",
      "check_dataset/demo_img/Eric_Fehr_0001.jpg",
      "check_dataset/demo_img/Harry_Kalas_0001.jpg",
      "check_dataset/demo_img/Francis_Ford_Coppola_0001.jpg",
      "check_dataset/demo_img/Amer_al-Saadi_0001.jpg",
      "check_dataset/demo_img/Sergei_Ivanov_0001.jpg",
      "check_dataset/demo_img/Erin_Runnion_0003.jpg",
      "check_dataset/demo_img/Bill_Stapleton_0001.jpg",
      "check_dataset/demo_img/Daniel_Bruehl_0001.jpg",
      "check_dataset/demo_img/Clare_Short_0004.jpg"
    ]
  },
  "analysis": {},
  "dataset_path": "./dataset/face_rec_examples",
  "show_type": "image",
  "dataset_type": "ClsDataset"
}

The verification results mentioned above indicate that check_pass being True means the dataset format meets the requirements. Details of other indicators are as follows:

#### 4.1.3 Dataset Format Conversion / Dataset Splitting (Optional) After completing the data validation, you can convert the dataset format and re-split the training/validation ratio by modifying the configuration file or adding hyperparameters.
πŸ‘‰ Details on Format Conversion / Dataset Splitting (Click to Expand)

The face feature module does not support data format conversion or dataset splitting.

#### 4.1.4 Data Organization for Face Feature Module The format of the validation dataset for the face feature module differs from the training dataset. If you need to evaluate model accuracy on private data, please organize your dataset as follows: ```bash face_rec_dataroot # Root directory of the dataset, the directory name can be changed β”œβ”€β”€ train # Directory for saving the training dataset, the directory name cannot be changed β”œβ”€β”€ images # Directory for saving images, the directory name can be changed but should correspond to the content in label.txt β”œβ”€β”€ xxx.jpg # Face image file β”œβ”€β”€ xxx.jpg # Face image file ... └──label.txt # Training set annotation file, the file name cannot be changed. Each line gives the relative path of the image to `train` and the face image class (face identity) id, separated by a space. Example content: images/image_06765.jpg 0 β”œβ”€β”€ val # Directory for saving the validation dataset, the directory name cannot be changed β”œβ”€β”€ images # Directory for saving images, the directory name can be changed but should correspond to the content in pair_label.txt β”œβ”€β”€ xxx.jpg # Face image file β”œβ”€β”€ xxx.jpg # Face image file ... └── pair_label.txt # Validation dataset annotation file, the file name cannot be changed. Each line gives the paths of two images to be compared and a 0 or 1 label indicating whether the pair of images belong to the same person, separated by spaces. ``` Example content of the validation set annotation file `pair_label.txt`: ```bash # Face image 1.jpg Face image 2.jpg Label (0 indicates the two face images do not belong to the same person, 1 indicates they do) images/Angela_Merkel_0001.jpg images/Angela_Merkel_0002.jpg 1 images/Bruce_Gebhardt_0001.jpg images/Masao_Azuma_0001.jpg 0 images/Francis_Ford_Coppola_0001.jpg images/Francis_Ford_Coppola_0002.jpg 1 images/Jason_Kidd_0006.jpg images/Jason_Kidd_0008.jpg 1 images/Miyako_Miyazaki_0002.jpg images/Munir_Akram_0002.jpg 0 ``` ### 4.2 Model Training Model training can be completed with a single command. Here is an example of training MobileFaceNet: ```bash python main.py -c paddlex/configs/modules/face_feature/MobileFaceNet.yaml \ -o Global.mode=train \ -o Global.dataset_dir=./dataset/face_rec_examples ``` The steps required are: * Specify the path to the `.yaml` configuration file for the model (here it is `MobileFaceNet.yaml`) * Specify the mode as model training: `-o Global.mode=train` * Specify the path to the training dataset: `-o Global.dataset_dir` * Other related parameters can be set by modifying the `Global` and `Train` fields in the `.yaml` configuration file or by appending parameters in the command line. For example, to specify the first two GPUs for training: `-o Global.device=gpu:0,1`; to set the number of training epochs to 10: `-o Train.epochs_iters=10`. For more modifiable parameters and their detailed explanations, refer to the configuration file instructions for the corresponding task module [PaddleX Common Configuration Parameters for Model Tasks](../../instructions/config_parameters_common.en.md). * New Feature: Paddle 3.0 support CINN (Compiler Infrastructure for Neural Networks) to accelerate training speed when using GPU device. Please specify `-o Train.dy2st=True` to enable it.
πŸ‘‰ More Details (Click to Expand)
### 4.3 Model Evaluation After completing model training, you can evaluate the specified model weight file on the validation set to verify the model's accuracy. Using PaddleX for model evaluation, you can complete the evaluation with a single command:
python main.py -c paddlex/configs/modules/face_detection/MobileFaceNet.yaml \
    -o Global.mode=evaluate \
    -o Global.dataset_dir=./dataset/face_rec_examples
Similar to model training, the process involves the following steps: * Specify the path to the `.yaml` configuration file for the model(here it's `MobileFaceNet.yaml`οΌ‰ * Set the mode to model evaluation: `-o Global.mode=evaluate` * Specify the path to the validation dataset: `-o Global.dataset_dir` Other related parameters can be configured by modifying the fields under `Global` and `Evaluate` in the `.yaml` configuration file. For detailed information, please refer to [PaddleX Common Configuration Parameters for Models](../../instructions/config_parameters_common.en.md)。
πŸ‘‰ More Details (Click to Expand) During model evaluation, the path to the model weights file needs to be specified. Each configuration file has a default weight save path built in. If you need to change it, you can set it by appending a command line parameter, such as `-o Evaluate.weight_path="./output/best_model/best_model/model.pdparams"`. After completing the model evaluation, an `evaluate_result.json` file will be produced, which records the evaluation results. Specifically, it records whether the evaluation task was completed normally and the model's evaluation metrics, including Accuracy.
### 4.4 Model Inference After completing model training and evaluation, you can use the trained model weights for inference predictions. In PaddleX, model inference predictions can be implemented through two methods: command line and wheel package. #### 4.4.1 Model Inference * To perform inference predictions through the command line, you only need the following command. Before running the following code, please download the [example image](https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/face_recognition_001.jpg) to your local machine. ```bash python main.py -c paddlex/configs/modules/face_feature/MobileFaceNet.yaml \ -o Global.mode=predict \ -o Predict.model_dir="./output/best_model/inference" \ -o Predict.input="face_recognition_001.jpg" ``` Similar to model training and evaluation, the following steps are required: * Specify the path to the model's `.yaml` configuration file (here it is `MobileFaceNet.yaml`) * Specify the mode as model inference prediction: `-o Global.mode=predict` * Specify the path to the model weights: `-o Predict.model_dir="./output/best_model/inference"` * Specify the path to the input data: `-o Predict.input="..."` Other related parameters can be set by modifying the fields under `Global` and `Predict` in the `.yaml` configuration file. For details, please refer to [PaddleX Common Model Configuration File Parameter Description](../../instructions/config_parameters_common.en.md). #### 4.4.2 Model Integration The model can be directly integrated into the PaddleX pipeline or into your own project. 1. Pipeline Integration The face feature module can be integrated into the PaddleX pipeline for [Face Recognition](../../../pipeline_usage/tutorials/face_recognition_pipelines/face_recognition.en.md). You only need to replace the model path to update the face feature module of the relevant pipeline. In pipeline integration, you can use high-performance deployment and serving deployment to deploy the model you obtained. 2. Module Integration The weights you produced can be directly integrated into the face feature module. You can refer to the Python example code in [Quick Integration](#III.-Quick-Integration) and only need to replace the model with the path to the model you trained. You can also use the PaddleX high-performance inference plugin to optimize the inference process of your model and further improve efficiency. For detailed procedures, please refer to the [PaddleX High-Performance Inference Guide](../../../pipeline_deploy/high_performance_inference.en.md).