---
comments: true
---
# 开放词汇分割模块使用教程
## 一、概述
开放词汇分割是一项图像分割任务,旨在根据文本描述、边框、关键点等除图像以外的信息作为提示,分割图像中对应的物体。它允许模型处理广泛的对象类别,而无需预定义的类别列表。这项技术结合了视觉和多模态技术,极大地提高了图像处理的灵活性和精度。开放词汇分割在计算机视觉领域具有重要应用价值,尤其在复杂场景下的对象分割任务中表现突出。
## 二、支持模型列表
> 推理耗时仅包含模型推理耗时,不包含前后处理耗时。
| 模型 | 模型下载链接 |
GPU推理耗时(ms) [常规模式 / 高性能模式] |
GPU推理耗时(ms) [常规模式 / 高性能模式] |
模型存储大小(MB) |
介绍 |
| SAM-H_box |
推理模型 |
- / - |
- / - |
2433.7 |
SAM(Segment Anything Model)是一种先进的图像分割模型,能够根据用户提供的简单提示(如点、框或文本)对图像中的任意对象进行分割。基于SA-1B数据集训练,有一千万的图像数据和十一亿掩码标注,在大部分场景均有较好的效果。其中SAM-H_box表示使用框作为分割提示输入,SAM会分割被框包裹主的主体;SAM-H_point表示使用点作为分割提示输入,SAM会分割点所在的主体。 |
| SAM-H_point |
推理模型 |
- / - |
- / - |
2433.7 |
测试环境说明:
- 性能测试环境
- 硬件配置:
- GPU:NVIDIA Tesla T4
- CPU:Intel Xeon Gold 6271C @ 2.60GHz
- 软件环境:
- Ubuntu 20.04 / CUDA 11.8 / cuDNN 8.9 / TensorRT 8.6.1.6
- paddlepaddle 3.0.0 / paddlex 3.0.3
- 推理模式说明
| 模式 |
GPU配置 |
CPU配置 |
加速技术组合 |
| 常规模式 |
FP32精度 / 无TRT加速 |
FP32精度 / 8线程 |
PaddleInference |
| 高性能模式 |
选择先验精度类型和加速策略的最优组合 |
FP32精度 / 8线程 |
选择先验最优后端(Paddle/OpenVINO/TRT等) |
## 三、快速集成
> ❗ 在快速集成前,请先安装 PaddleX 的 wheel 包,详细请参考 [PaddleX本地安装教程](../../../installation/installation.md)
完成whl包的安装后,几行代码即可完成开放词汇分割模块的推理,可以任意切换该模块下的模型,您也可以将开放词汇分割的模块中的模型推理集成到您的项目中。运行以下代码前,请您下载[示例图片](https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/open_vocabulary_segmentation.jpg)到本地。
```python
from paddlex import create_model
model = create_model(model_name='SAM-H_box')
results = model.predict(
input="open_vocabulary_segmentation.jpg",
prompts={
"box_prompt": [
[112.9239273071289,118.38755798339844,513.7587890625,382.0570068359375],
[4.597158432006836,263.5540771484375,92.20092010498047,336.5640869140625],
[592.3548583984375,260.8838806152344,607.1813354492188,294.2261962890625]
],
},
batch_size=1
)
for res in results:
res.print()
res.save_to_img(f"./output/")
res.save_to_json(f"./output/res.json")
```
运行后,得到的结果为:
```bash
{'res': "{'input_path': 'open_vocabulary_segmentation.jpg', 'prompts': {'box_prompt': [[112.9239273071289, 118.38755798339844, 513.7587890625, 382.0570068359375], [4.597158432006836, 263.5540771484375, 92.20092010498047, 336.5640869140625], [592.3548583984375, 260.8838806152344, 607.1813354492188, 294.2261962890625]]}, 'masks': '...', 'mask_infos': [{'label': 'box_prompt', 'prompt': [112.9239273071289, 118.38755798339844, 513.7587890625, 382.0570068359375]}, {'label': 'box_prompt', 'prompt': [4.597158432006836, 263.5540771484375, 92.20092010498047, 336.5640869140625]}, {'label': 'box_prompt', 'prompt': [592.3548583984375, 260.8838806152344, 607.1813354492188, 294.2261962890625]}]}"}
```
运行结果参数含义如下:
- `input_path`: 表示输入待预测图像的路径
- `prompts`: 预测使用的原始prompt信息
- `masks`: 实际预测的mask,由于数据过大不便于直接print,所以此处用`...`替换,可以通过`res.save_to_img()`将预测结果保存为图片,通过`res.save_to_json()`将预测结果保存为json文件。
- `mask_infos`: 每个预测的mask对应的prompt信息
- `label`: 预测的mask对应的prompt类型
- `prompt`: 预测的mask对应的原始prompt输入
可视化图片如下:
相关方法、参数等说明如下:
* `create_model`实例化开放词汇分割模型(此处以`SAM-H_box`为例),具体说明如下:
| 参数 |
参数说明 |
参数类型 |
可选项 |
默认值 |
model_name |
模型名称 |
str |
无 |
无 |
model_dir |
模型存储路径 |
str |
无 |
无 |
device |
模型推理设备 |
str |
支持指定GPU具体卡号,如“gpu:0”,其他硬件具体卡号,如“npu:0”,CPU如“cpu”。 |
gpu:0 |
use_hpip |
是否启用高性能推理插件 |
bool |
无 |
False |
hpi_config |
高性能推理配置 |
dict | None |
无 |
None |
* 其中,`model_name` 必须指定,指定 `model_name` 后,默认使用 PaddleX 内置的模型参数,在此基础上,指定 `model_dir` 时,使用用户自定义的模型。
* 调用开放词汇分割模型的 `predict()` 方法进行推理预测,`predict()` 方法参数有 `input` 、 `batch_size` 和 `prompts`,具体说明如下:
| 参数 |
参数说明 |
参数类型 |
可选项 |
默认值 |
input |
待预测数据,支持多种输入类型 |
Python Var/str/list |
- Python变量,如
numpy.ndarray表示的图像数据
- 文件路径,如图像文件的本地路径:
/root/data/img.jpg
- URL链接,如图像文件的网络URL:示例
- 本地目录,该目录下需包含待预测数据文件,如本地路径:
/root/data/
- 列表,列表元素需为上述类型数据,如
[numpy.ndarray, numpy.ndarray],[\"/root/data/img1.jpg\", \"/root/data/img2.jpg\"],[\"/root/data1\", \"/root/data2\"]
|
无 |
batch_size |
批大小 |
int |
任意整数 |
1 |
prompts |
模型使用提示词 |
dict |
- dict,如
{"box_prompt": [[float, float, float, foat], ...]},表示推理时使用的多个bbox作为prompt
|
无 |
* 对预测结果进行处理,每个样本的预测结果均为对应的Result对象,且支持打印、保存为图片、保存为`json`文件的操作:
| 方法 |
方法说明 |
参数 |
参数类型 |
参数说明 |
默认值 |
print() |
打印结果到终端 |
format_json |
bool |
是否对输出内容进行使用 JSON 缩进格式化 |
True |
indent |
int |
指定缩进级别,以美化输出的 JSON 数据,使其更具可读性,仅当 format_json 为 True 时有效 |
4 |
ensure_ascii |
bool |
控制是否将非 ASCII 字符转义为 Unicode。设置为 True 时,所有非 ASCII 字符将被转义;False 则保留原始字符,仅当format_json为True时有效 |
False |
save_to_json() |
将结果保存为json格式的文件 |
save_path |
str |
保存的文件路径,当为目录时,保存文件命名与输入文件类型命名一致 |
无 |
indent |
int |
指定缩进级别,以美化输出的 JSON 数据,使其更具可读性,仅当 format_json 为 True 时有效 |
4 |
ensure_ascii |
bool |
控制是否将非 ASCII 字符转义为 Unicode。设置为 True 时,所有非 ASCII 字符将被转义;False 则保留原始字符,仅当format_json为True时有效 |
False |
save_to_img() |
将结果保存为图像格式的文件 |
save_path |
str |
保存的文件路径,当为目录时,保存文件命名与输入文件类型命名一致 |
无 |
* 此外,也支持通过属性获取带结果的可视化图像和预测结果,具体如下:
| 属性 |
属性说明 |
json |
获取预测的json格式的结果 |
img |
获取格式为dict的可视化图像 |
关于更多 PaddleX 的单模型推理的 API 的使用方法,可以参考[PaddleX单模型Python脚本使用说明](../../instructions/model_python_API.md)。
## 四、二次开发
当前模块暂时不支持微调训练,仅支持推理集成。关于该模块的微调训练,计划在未来支持。