# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Dict, List, Tuple import numpy as np from ..result_v2 import LayoutParsingBlock from ..utils import calculate_projection_overlap_ratio def get_nearest_edge_distance( bbox1: List[int], bbox2: List[int], weight: List[float] = [1.0, 1.0, 1.0, 1.0], ) -> Tuple[float]: """ Calculate the nearest edge distance between two bounding boxes, considering orientational weights. Args: bbox1 (list): The bounding box coordinates [x1, y1, x2, y2] of the input object. bbox2 (list): The bounding box coordinates [x1', y1', x2', y2'] of the object to match against. weight (list, optional): orientational weights for the edge distances [left, right, up, down]. Defaults to [1, 1, 1, 1]. Returns: float: The calculated minimum edge distance between the bounding boxes. """ x1, y1, x2, y2 = bbox1 x1_prime, y1_prime, x2_prime, y2_prime = bbox2 min_x_distance, min_y_distance = 0, 0 horizontal_iou = calculate_projection_overlap_ratio(bbox1, bbox2, "horizontal") vertical_iou = calculate_projection_overlap_ratio(bbox1, bbox2, "vertical") if horizontal_iou > 0 and vertical_iou > 0: return 0.0 if horizontal_iou == 0: min_x_distance = min(abs(x1 - x2_prime), abs(x2 - x1_prime)) * ( weight[0] if x2 < x1_prime else weight[1] ) if vertical_iou == 0: min_y_distance = min(abs(y1 - y2_prime), abs(y2 - y1_prime)) * ( weight[2] if y2 < y1_prime else weight[3] ) return min_x_distance + min_y_distance def _projection_by_bboxes(boxes: np.ndarray, axis: int) -> np.ndarray: """ Generate a 1D projection histogram from bounding boxes along a specified axis. Args: boxes: A (N, 4) array of bounding boxes defined by [x_min, y_min, x_max, y_max]. axis: Axis for projection; 0 for horizontal (x-axis), 1 for vertical (y-axis). Returns: A 1D numpy array representing the projection histogram based on bounding box intervals. """ assert axis in [0, 1] max_length = np.max(boxes[:, axis::2]) projection = np.zeros(max_length, dtype=int) # Increment projection histogram over the interval defined by each bounding box for start, end in boxes[:, axis::2]: projection[start:end] += 1 return projection def _split_projection_profile(arr_values: np.ndarray, min_value: float, min_gap: float): """ Split the projection profile into segments based on specified thresholds. Args: arr_values: 1D array representing the projection profile. min_value: Minimum value threshold to consider a profile segment significant. min_gap: Minimum gap width to consider a separation between segments. Returns: A tuple of start and end indices for each segment that meets the criteria. """ # Identify indices where the projection exceeds the minimum value significant_indices = np.where(arr_values > min_value)[0] if not len(significant_indices): return # Calculate gaps between significant indices index_diffs = significant_indices[1:] - significant_indices[:-1] gap_indices = np.where(index_diffs > min_gap)[0] # Determine start and end indices of segments segment_starts = np.insert( significant_indices[gap_indices + 1], 0, significant_indices[0], ) segment_ends = np.append( significant_indices[gap_indices], significant_indices[-1] + 1, ) return segment_starts, segment_ends def recursive_yx_cut( boxes: np.ndarray, indices: List[int], res: List[int], min_gap: int = 1 ): """ Recursively project and segment bounding boxes, starting with Y-axis and followed by X-axis. Args: boxes: A (N, 4) array representing bounding boxes. indices: List of indices indicating the original position of boxes. res: List to store indices of the final segmented bounding boxes. min_gap (int): Minimum gap width to consider a separation between segments on the X-axis. Defaults to 1. Returns: None: This function modifies the `res` list in place. """ assert len(boxes) == len( indices ), "The length of boxes and indices must be the same." # Sort by y_min for Y-axis projection y_sorted_indices = boxes[:, 1].argsort() y_sorted_boxes = boxes[y_sorted_indices] y_sorted_indices = np.array(indices)[y_sorted_indices] # Perform Y-axis projection y_projection = _projection_by_bboxes(boxes=y_sorted_boxes, axis=1) y_intervals = _split_projection_profile(y_projection, 0, 1) if not y_intervals: return # Process each segment defined by Y-axis projection for y_start, y_end in zip(*y_intervals): # Select boxes within the current y interval y_interval_indices = (y_start <= y_sorted_boxes[:, 1]) & ( y_sorted_boxes[:, 1] < y_end ) y_boxes_chunk = y_sorted_boxes[y_interval_indices] y_indices_chunk = y_sorted_indices[y_interval_indices] # Sort by x_min for X-axis projection x_sorted_indices = y_boxes_chunk[:, 0].argsort() x_sorted_boxes_chunk = y_boxes_chunk[x_sorted_indices] x_sorted_indices_chunk = y_indices_chunk[x_sorted_indices] # Perform X-axis projection x_projection = _projection_by_bboxes(boxes=x_sorted_boxes_chunk, axis=0) x_intervals = _split_projection_profile(x_projection, 0, min_gap) if not x_intervals: continue # If X-axis cannot be further segmented, add current indices to results if len(x_intervals[0]) == 1: res.extend(x_sorted_indices_chunk) continue # Recursively process each segment defined by X-axis projection for x_start, x_end in zip(*x_intervals): x_interval_indices = (x_start <= x_sorted_boxes_chunk[:, 0]) & ( x_sorted_boxes_chunk[:, 0] < x_end ) recursive_yx_cut( x_sorted_boxes_chunk[x_interval_indices], x_sorted_indices_chunk[x_interval_indices], res, ) def recursive_xy_cut( boxes: np.ndarray, indices: List[int], res: List[int], min_gap: int = 1 ): """ Recursively performs X-axis projection followed by Y-axis projection to segment bounding boxes. Args: boxes: A (N, 4) array representing bounding boxes with [x_min, y_min, x_max, y_max]. indices: A list of indices representing the position of boxes in the original data. res: A list to store indices of bounding boxes that meet the criteria. min_gap (int): Minimum gap width to consider a separation between segments on the X-axis. Defaults to 1. Returns: None: This function modifies the `res` list in place. """ # Ensure boxes and indices have the same length assert len(boxes) == len( indices ), "The length of boxes and indices must be the same." # Sort by x_min to prepare for X-axis projection x_sorted_indices = boxes[:, 0].argsort() x_sorted_boxes = boxes[x_sorted_indices] x_sorted_indices = np.array(indices)[x_sorted_indices] # Perform X-axis projection x_projection = _projection_by_bboxes(boxes=x_sorted_boxes, axis=0) x_intervals = _split_projection_profile(x_projection, 0, 1) if not x_intervals: return # Process each segment defined by X-axis projection for x_start, x_end in zip(*x_intervals): # Select boxes within the current x interval x_interval_indices = (x_start <= x_sorted_boxes[:, 0]) & ( x_sorted_boxes[:, 0] < x_end ) x_boxes_chunk = x_sorted_boxes[x_interval_indices] x_indices_chunk = x_sorted_indices[x_interval_indices] # Sort selected boxes by y_min to prepare for Y-axis projection y_sorted_indices = x_boxes_chunk[:, 1].argsort() y_sorted_boxes_chunk = x_boxes_chunk[y_sorted_indices] y_sorted_indices_chunk = x_indices_chunk[y_sorted_indices] # Perform Y-axis projection y_projection = _projection_by_bboxes(boxes=y_sorted_boxes_chunk, axis=1) y_intervals = _split_projection_profile(y_projection, 0, min_gap) if not y_intervals: continue # If Y-axis cannot be further segmented, add current indices to results if len(y_intervals[0]) == 1: res.extend(y_sorted_indices_chunk) continue # Recursively process each segment defined by Y-axis projection for y_start, y_end in zip(*y_intervals): y_interval_indices = (y_start <= y_sorted_boxes_chunk[:, 1]) & ( y_sorted_boxes_chunk[:, 1] < y_end ) recursive_xy_cut( y_sorted_boxes_chunk[y_interval_indices], y_sorted_indices_chunk[y_interval_indices], res, ) def reference_insert( block: LayoutParsingBlock, sorted_blocks: List[LayoutParsingBlock], config: Dict, median_width: float = 0.0, ): """ Insert reference block into sorted blocks based on the distance between the block and the nearest sorted block. Args: block: The block to insert into the sorted blocks. sorted_blocks: The sorted blocks where the new block will be inserted. config: Configuration dictionary containing parameters related to the layout parsing. median_width: Median width of the document. Defaults to 0.0. Returns: sorted_blocks: The updated sorted blocks after insertion. """ min_distance = float("inf") nearest_sorted_block_index = 0 for sorted_block_idx, sorted_block in enumerate(sorted_blocks): if sorted_block.bbox[3] <= block.bbox[1]: distance = -(sorted_block.bbox[2] * 10 + sorted_block.bbox[3]) if distance < min_distance: min_distance = distance nearest_sorted_block_index = sorted_block_idx sorted_blocks.insert(nearest_sorted_block_index + 1, block) return sorted_blocks def manhattan_insert( block: LayoutParsingBlock, sorted_blocks: List[LayoutParsingBlock], config: Dict, median_width: float = 0.0, ): """ Insert a block into a sorted list of blocks based on the Manhattan distance between the block and the nearest sorted block. Args: block: The block to insert into the sorted blocks. sorted_blocks: The sorted blocks where the new block will be inserted. config: Configuration dictionary containing parameters related to the layout parsing. median_width: Median width of the document. Defaults to 0.0. Returns: sorted_blocks: The updated sorted blocks after insertion. """ min_distance = float("inf") nearest_sorted_block_index = 0 for sorted_block_idx, sorted_block in enumerate(sorted_blocks): distance = _manhattan_distance(block.bbox, sorted_block.bbox) if distance < min_distance: min_distance = distance nearest_sorted_block_index = sorted_block_idx sorted_blocks.insert(nearest_sorted_block_index + 1, block) return sorted_blocks def weighted_distance_insert( block: LayoutParsingBlock, sorted_blocks: List[LayoutParsingBlock], config: Dict, median_width: float = 0.0, ): """ Insert a block into a sorted list of blocks based on the weighted distance between the block and the nearest sorted block. Args: block: The block to insert into the sorted blocks. sorted_blocks: The sorted blocks where the new block will be inserted. config: Configuration dictionary containing parameters related to the layout parsing. median_width: Median width of the document. Defaults to 0.0. Returns: sorted_blocks: The updated sorted blocks after insertion. """ doc_title_labels = config.get("doc_title_labels", []) paragraph_title_labels = config.get("paragraph_title_labels", []) vision_labels = config.get("vision_labels", []) xy_cut_block_labels = config.get("xy_cut_block_labels", []) tolerance_len = config.get("tolerance_len", 2) x1, y1, x2, y2 = block.bbox min_weighted_distance, min_edge_distance, min_up_edge_distance = ( float("inf"), float("inf"), float("inf"), ) nearest_sorted_block_index = 0 for sorted_block_idx, sorted_block in enumerate(sorted_blocks): x1_prime, y1_prime, x2_prime, y2_prime = sorted_block.bbox # Calculate edge distance weight = _get_weights(block.order_label, block.orientation) edge_distance = get_nearest_edge_distance(block.bbox, sorted_block.bbox, weight) if block.label in doc_title_labels: disperse = max(1, median_width) tolerance_len = max(tolerance_len, disperse) if block.label == "abstract": tolerance_len *= 2 edge_distance = max(0.1, edge_distance) * 10 # Calculate up edge distances up_edge_distance = y1_prime left_edge_distance = x1_prime if ( block.label in xy_cut_block_labels or block.label in doc_title_labels or block.label in paragraph_title_labels or block.label in vision_labels ) and y1 > y2_prime: up_edge_distance = -y2_prime left_edge_distance = -x2_prime if abs(min_up_edge_distance - up_edge_distance) <= tolerance_len: up_edge_distance = min_up_edge_distance # Calculate weighted distance weighted_distance = ( +edge_distance * config.get("edge_weight", 10**4) + up_edge_distance * config.get("up_edge_weight", 1) + left_edge_distance * config.get("left_edge_weight", 0.0001) ) min_edge_distance = min(edge_distance, min_edge_distance) min_up_edge_distance = min(up_edge_distance, min_up_edge_distance) if weighted_distance < min_weighted_distance: nearest_sorted_block_index = sorted_block_idx min_weighted_distance = weighted_distance if y1 > y1_prime or (y1 == y1_prime and x1 > x1_prime): nearest_sorted_block_index = sorted_block_idx + 1 sorted_blocks.insert(nearest_sorted_block_index, block) return sorted_blocks def insert_child_blocks( block: LayoutParsingBlock, block_idx: int, sorted_blocks: List[LayoutParsingBlock], ) -> List[LayoutParsingBlock]: """ Insert child blocks of a block into the sorted blocks list. Args: block: The parent block whose child blocks need to be inserted. block_idx: Index at which the parent block exists in the sorted blocks list. sorted_blocks: Sorted blocks list where the child blocks are to be inserted. Returns: sorted_blocks: Updated sorted blocks list after inserting child blocks. """ if block.child_blocks: sub_blocks = block.get_child_blocks() sub_blocks.append(block) sub_blocks = sort_child_blocks(sub_blocks, block.orientation) sorted_blocks[block_idx] = sub_blocks[0] for block in sub_blocks[1:]: block_idx += 1 sorted_blocks.insert(block_idx, block) return sorted_blocks def sort_child_blocks(blocks, orientation="horizontal") -> List[LayoutParsingBlock]: """ Sort child blocks based on their bounding box coordinates. Args: blocks: A list of LayoutParsingBlock objects representing the child blocks. orientation: Orientation of the blocks ('horizontal' or 'vertical'). Default is 'horizontal'. Returns: sorted_blocks: A sorted list of LayoutParsingBlock objects. """ if orientation == "horizontal": # from top to bottom blocks.sort( key=lambda x: ( x.bbox[1], # y_min x.bbox[0], # x_min x.bbox[1] ** 2 + x.bbox[0] ** 2, # distance with (0,0) ), reverse=False, ) else: # from right to left blocks.sort( key=lambda x: ( x.bbox[0], # x_min x.bbox[1], # y_min x.bbox[1] ** 2 + x.bbox[0] ** 2, # distance with (0,0) ), reverse=True, ) return blocks def _get_weights(label, dircetion="horizontal"): """Define weights based on the label and orientation.""" if label == "doc_title": return ( [1, 0.1, 0.1, 1] if dircetion == "horizontal" else [0.2, 0.1, 1, 1] ) # left-down , right-left elif label in [ "paragraph_title", "table_title", "abstract", "image", "seal", "chart", "figure", ]: return [1, 1, 0.1, 1] # down else: return [1, 1, 1, 0.1] # up def _manhattan_distance( point1: Tuple[float, float], point2: Tuple[float, float], weight_x: float = 1.0, weight_y: float = 1.0, ) -> float: """ Calculate the weighted Manhattan distance between two points. Args: point1 (Tuple[float, float]): The first point as (x, y). point2 (Tuple[float, float]): The second point as (x, y). weight_x (float): The weight for the x-axis distance. Default is 1.0. weight_y (float): The weight for the y-axis distance. Default is 1.0. Returns: float: The weighted Manhattan distance between the two points. """ return weight_x * abs(point1[0] - point2[0]) + weight_y * abs(point1[1] - point2[1]) def sort_blocks(blocks, median_width=None, reverse=False): """ Sort blocks based on their y_min, x_min and distance with (0,0). Args: blocks (list): list of blocks to be sorted. median_width (int): the median width of the text blocks. reverse (bool, optional): whether to sort in descending order. Default is False. Returns: list: a list of sorted blocks. """ if median_width is None: median_width = 1 blocks.sort( key=lambda x: ( x.bbox[1] // 10, # y_min x.bbox[0] // median_width, # x_min x.bbox[1] ** 2 + x.bbox[0] ** 2, # distance with (0,0) ), reverse=reverse, ) return blocks def get_cut_blocks( blocks, cut_orientation, cut_coordinates, overall_region_box, mask_labels=[] ): """ Cut blocks based on the given cut orientation and coordinates. Args: blocks (list): list of blocks to be cut. cut_orientation (str): cut orientation, either "horizontal" or "vertical". cut_coordinates (list): list of cut coordinates. overall_region_box (list): the overall region box that contains all blocks. Returns: list: a list of tuples containing the cutted blocks and their corresponding mean width。 """ cuted_list = [] # filter out mask blocks,including header, footer, unordered and child_blocks # 0: horizontal, 1: vertical cut_aixis = 0 if cut_orientation == "horizontal" else 1 blocks.sort(key=lambda x: x.bbox[cut_aixis + 2]) cut_coordinates.append(float("inf")) cut_coordinates = list(set(cut_coordinates)) cut_coordinates.sort() cut_idx = 0 for cut_coordinate in cut_coordinates: group_blocks = [] block_idx = cut_idx while block_idx < len(blocks): block = blocks[block_idx] if block.bbox[cut_aixis + 2] > cut_coordinate: break elif block.order_label not in mask_labels: group_blocks.append(block) block_idx += 1 cut_idx = block_idx if group_blocks: cuted_list.append(group_blocks) return cuted_list def add_split_block( blocks: List[LayoutParsingBlock], region_bbox: List[int] ) -> List[LayoutParsingBlock]: block_bboxes = np.array([block.bbox for block in blocks]) discontinuous = calculate_discontinuous_projection( block_bboxes, orientation="vertical" ) current_interval = discontinuous[0] for interval in discontinuous[1:]: gap_len = interval[0] - current_interval[1] if gap_len > 40: x1, _, x2, __ = region_bbox y1 = current_interval[1] + 5 y2 = interval[0] - 5 bbox = [x1, y1, x2, y2] split_block = LayoutParsingBlock(label="split", bbox=bbox) blocks.append(split_block) current_interval = interval def get_adjacent_blocks_by_orientation( blocks: List[LayoutParsingBlock], block_idx: int, ref_block_idxes: List[int], iou_threshold, ) -> List: """ Get the adjacent blocks with the same orientation as the current block. Args: block (LayoutParsingBlock): The current block. blocks (List[LayoutParsingBlock]): A list of all blocks. ref_block_idxes (List[int]): A list of indices of reference blocks. iou_threshold (float): The IOU threshold to determine if two blocks are considered adjacent. Returns: Int: The index of the previous block with same orientation. Int: The index of the following block with same orientation. """ min_prev_block_distance = float("inf") prev_block_index = None min_post_block_distance = float("inf") post_block_index = None block = blocks[block_idx] child_labels = [ "vision_footnote", "sub_paragraph_title", "doc_title_text", "vision_title", ] # find the nearest text block with same orientation to the current block for ref_block_idx in ref_block_idxes: ref_block = blocks[ref_block_idx] ref_block_orientation = ref_block.orientation if ref_block.order_label in child_labels: continue match_block_iou = calculate_projection_overlap_ratio( block.bbox, ref_block.bbox, ref_block_orientation, ) child_match_distance_tolerance_len = block.short_side_length / 10 if block.order_label == "vision": if ref_block.num_of_lines == 1: gap_tolerance_len = ref_block.short_side_length * 2 else: gap_tolerance_len = block.short_side_length / 10 else: gap_tolerance_len = block.short_side_length * 2 if match_block_iou >= iou_threshold: prev_distance = ( block.secondary_orientation_start_coordinate - ref_block.secondary_orientation_end_coordinate + child_match_distance_tolerance_len ) // 5 + ref_block.start_coordinate / 5000 next_distance = ( ref_block.secondary_orientation_start_coordinate - block.secondary_orientation_end_coordinate + child_match_distance_tolerance_len ) // 5 + ref_block.start_coordinate / 5000 if ( ref_block.secondary_orientation_end_coordinate <= block.secondary_orientation_start_coordinate + child_match_distance_tolerance_len and prev_distance < min_prev_block_distance ): min_prev_block_distance = prev_distance if ( block.secondary_orientation_start_coordinate - ref_block.secondary_orientation_end_coordinate < gap_tolerance_len ): prev_block_index = ref_block_idx elif ( ref_block.secondary_orientation_start_coordinate > block.secondary_orientation_end_coordinate - child_match_distance_tolerance_len and next_distance < min_post_block_distance ): min_post_block_distance = next_distance if ( ref_block.secondary_orientation_start_coordinate - block.secondary_orientation_end_coordinate < gap_tolerance_len ): post_block_index = ref_block_idx diff_dist = abs(min_prev_block_distance - min_post_block_distance) # if the difference in distance is too large, only consider the nearest one if diff_dist * 5 > block.short_side_length: if min_prev_block_distance < min_post_block_distance: post_block_index = None else: prev_block_index = None return prev_block_index, post_block_index def update_doc_title_child_blocks( blocks: List[LayoutParsingBlock], block: LayoutParsingBlock, prev_idx: int, post_idx: int, config: dict, ) -> None: """ Update the child blocks of a document title block. The child blocks need to meet the following conditions: 1. They must be adjacent 2. They must have the same orientation as the parent block. 3. Their short side length should be less than 80% of the parent's short side length. 4. Their long side length should be less than 150% of the parent's long side length. 5. The child block must be text block. Args: blocks (List[LayoutParsingBlock]): overall blocks. block (LayoutParsingBlock): document title block. prev_idx (int): previous block index, None if not exist. post_idx (int): post block index, None if not exist. config (dict): configurations. Returns: None """ for idx in [prev_idx, post_idx]: if idx is None: continue ref_block = blocks[idx] with_seem_orientation = ref_block.orientation == block.orientation short_side_length_condition = ( ref_block.short_side_length < block.short_side_length * 0.8 ) long_side_length_condition = ( ref_block.long_side_length < block.long_side_length or ref_block.long_side_length > 1.5 * block.long_side_length ) if ( with_seem_orientation and short_side_length_condition and long_side_length_condition and ref_block.num_of_lines < 3 ): ref_block.order_label = "doc_title_text" block.append_child_block(ref_block) config["text_block_idxes"].remove(idx) def update_paragraph_title_child_blocks( blocks: List[LayoutParsingBlock], block: LayoutParsingBlock, prev_idx: int, post_idx: int, config: dict, ) -> None: """ Update the child blocks of a paragraph title block. The child blocks need to meet the following conditions: 1. They must be adjacent 2. They must have the same orientation as the parent block. 3. The child block must be paragraph title block. Args: blocks (List[LayoutParsingBlock]): overall blocks. block (LayoutParsingBlock): document title block. prev_idx (int): previous block index, None if not exist. post_idx (int): post block index, None if not exist. config (dict): configurations. Returns: None """ paragraph_title_labels = config.get("paragraph_title_labels", []) for idx in [prev_idx, post_idx]: if idx is None: continue ref_block = blocks[idx] min_height = min(block.height, ref_block.height) nearest_edge_distance = get_nearest_edge_distance(block.bbox, ref_block.bbox) with_seem_orientation = ref_block.orientation == block.orientation if ( with_seem_orientation and ref_block.label in paragraph_title_labels and nearest_edge_distance <= min_height * 2 ): ref_block.order_label = "sub_paragraph_title" block.append_child_block(ref_block) config["paragraph_title_block_idxes"].remove(idx) def update_vision_child_blocks( blocks: List[LayoutParsingBlock], block: LayoutParsingBlock, ref_block_idxes: List[int], prev_idx: int, post_idx: int, config: dict, ) -> None: """ Update the child blocks of a paragraph title block. The child blocks need to meet the following conditions: - For Both: 1. They must be adjacent 2. The child block must be vision_title or text block. - For vision_title: 1. The distance between the child block and the parent block should be less than 1/2 of the parent's height. - For text block: 1. The distance between the child block and the parent block should be less than 15. 2. The child short_side_length should be less than the parent's short side length. 3. The child long_side_length should be less than 50% of the parent's long side length. 4. The difference between their centers is very small. Args: blocks (List[LayoutParsingBlock]): overall blocks. block (LayoutParsingBlock): document title block. ref_block_idxes (List[int]): A list of indices of reference blocks. prev_idx (int): previous block index, None if not exist. post_idx (int): post block index, None if not exist. config (dict): configurations. Returns: None """ vision_title_labels = config.get("vision_title_labels", []) text_labels = config.get("text_labels", []) for idx in [prev_idx, post_idx]: if idx is None: continue ref_block = blocks[idx] nearest_edge_distance = get_nearest_edge_distance(block.bbox, ref_block.bbox) block_center = block.get_centroid() ref_block_center = ref_block.get_centroid() if ref_block.label in vision_title_labels and nearest_edge_distance <= min( block.height * 0.5, ref_block.height * 2 ): ref_block.order_label = "vision_title" block.append_child_block(ref_block) config["vision_title_block_idxes"].remove(idx) elif ( nearest_edge_distance <= 15 and ref_block.short_side_length < block.short_side_length and ref_block.long_side_length < 0.5 * block.long_side_length and ref_block.orientation == block.orientation and ( abs(block_center[0] - ref_block_center[0]) < 10 or ( block.bbox[0] - ref_block.bbox[0] < 10 and ref_block.num_of_lines == 1 ) or ( block.bbox[2] - ref_block.bbox[2] < 10 and ref_block.num_of_lines == 1 ) ) ): has_vision_footnote = False if len(block.child_blocks) > 0: for child_block in block.child_blocks: if child_block.label in text_labels: has_vision_footnote = True if not has_vision_footnote: ref_block.order_label = "vision_footnote" block.append_child_block(ref_block) config["text_block_idxes"].remove(idx) def calculate_discontinuous_projection( boxes, orientation="horizontal", return_num=False ) -> List: """ Calculate the discontinuous projection of boxes along the specified orientation. Args: boxes (ndarray): Array of bounding boxes represented by [[x_min, y_min, x_max, y_max]]. orientation (str): orientation along which to perform the projection ('horizontal' or 'vertical'). Returns: list: List of tuples representing the merged intervals. """ boxes = np.array(boxes) if orientation == "horizontal": intervals = boxes[:, [0, 2]] elif orientation == "vertical": intervals = boxes[:, [1, 3]] else: raise ValueError("orientation must be 'horizontal' or 'vertical'") intervals = intervals[np.argsort(intervals[:, 0])] merged_intervals = [] num = 1 current_start, current_end = intervals[0] num_list = [] for start, end in intervals[1:]: if start <= current_end: num += 1 current_end = max(current_end, end) else: num_list.append(num) merged_intervals.append((current_start, current_end)) num = 1 current_start, current_end = start, end num_list.append(num) merged_intervals.append((current_start, current_end)) if return_num: return merged_intervals, num_list return merged_intervals def shrink_overlapping_boxes( boxes, orientation="horizontal", min_threshold=0, max_threshold=0.1 ) -> List: """ Shrink overlapping boxes along the specified orientation. Args: boxes (ndarray): Array of bounding boxes represented by [[x_min, y_min, x_max, y_max]]. orientation (str): orientation along which to perform the shrinking ('horizontal' or 'vertical'). min_threshold (float): Minimum threshold for shrinking. Default is 0. max_threshold (float): Maximum threshold for shrinking. Default is 0.2. Returns: list: List of tuples representing the merged intervals. """ current_block = boxes[0] for block in boxes[1:]: x1, y1, x2, y2 = current_block.bbox x1_prime, y1_prime, x2_prime, y2_prime = block.bbox cut_iou = calculate_projection_overlap_ratio( current_block.bbox, block.bbox, orientation=orientation ) match_iou = calculate_projection_overlap_ratio( current_block.bbox, block.bbox, orientation="horizontal" if orientation == "vertical" else "vertical", ) if orientation == "vertical": if ( (match_iou > 0 and cut_iou > min_threshold and cut_iou < max_threshold) or y2 == y1_prime or abs(y2 - y1_prime) <= 3 ): overlap_y_min = max(y1, y1_prime) overlap_y_max = min(y2, y2_prime) split_y = int((overlap_y_min + overlap_y_max) / 2) overlap_y_min = split_y - 1 overlap_y_max = split_y + 1 current_block.bbox = [x1, y1, x2, overlap_y_min] block.bbox = [x1_prime, overlap_y_max, x2_prime, y2_prime] else: if ( (match_iou > 0 and cut_iou > min_threshold and cut_iou < max_threshold) or x2 == x1_prime or abs(x2 - x1_prime) <= 3 ): overlap_x_min = max(x1, x1_prime) overlap_x_max = min(x2, x2_prime) split_x = int((overlap_x_min + overlap_x_max) / 2) overlap_x_min = split_x - 1 overlap_x_max = split_x + 1 current_block.bbox = [x1, y1, overlap_x_min, y2] block.bbox = [overlap_x_max, y1_prime, x2_prime, y2_prime] current_block = block return boxes