---
comments: true
---
# Face Recognition Pipeline Tutorial
## 1. Introduction to the Face Recognition Pipeline
Face recognition is a crucial component in the field of computer vision, aiming to automatically identify individuals by analyzing and comparing facial features. This task involves not only detecting faces in images but also extracting and matching facial features to find corresponding identity information in a database. Face recognition is widely used in security authentication, surveillance systems, social media, smart devices, and other scenarios.
The face recognition pipeline is an end-to-end system dedicated to solving face detection and recognition tasks. It can quickly and accurately locate face regions in images, extract facial features, and retrieve and compare them with pre-established features in a feature database to confirm identity information.
The face recognition pipeline includes a face detection module and a face feature module, with several models in each module. Which models to use can be selected based on the benchmark data below. If you prioritize model accuracy, choose models with higher accuracy; if you prioritize inference speed, choose models with faster inference; if you prioritize model size, choose models with smaller storage requirements.
πModel List Details
Face Detection Module:
| Model | Model Download Link |
AP (%) Easy/Medium/Hard |
GPU Inference Time (ms) |
CPU Inference Time |
Model Size (M) |
Description |
| BlazeFace | Inference Model/Trained Model |
77.7/73.4/49.5 |
|
|
0.447 |
A lightweight and efficient face detection model |
| BlazeFace-FPN-SSH | Inference Model/Trained Model |
83.2/80.5/60.5 |
|
|
0.606 |
Improved BlazeFace with FPN and SSH structures |
| PicoDet_LCNet_x2_5_face | Inference Model/Trained Model |
93.7/90.7/68.1 |
|
|
28.9 |
Face detection model based on PicoDet_LCNet_x2_5 |
| PP-YOLOE_plus-S_face | Inference Model/Trained Model |
93.9/91.8/79.8 |
|
|
26.5 |
Face detection model based on PP-YOLOE_plus-S |
Note: The above accuracy metrics are evaluated on the WIDER-FACE validation set with an input size of 640x640. All GPU inference times are based on an NVIDIA Tesla T4 machine with FP32 precision. CPU inference speeds are based on an Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz with 8 threads and FP32 precision.
Face Recognition Module:
| Model | Model Download Link |
Output Feature Dimension |
AP (%) AgeDB-30/CFP-FP/LFW |
GPU Inference Time (ms) |
CPU Inference Time |
Model Size (M) |
Description |
| MobileFaceNet | Inference Model/Trained Model |
128 |
96.28/96.71/99.58 |
|
|
4.1 |
Face recognition model trained on MS1Mv3 based on MobileFaceNet |
| ResNet50_face | Inference Model/Trained Model |
512 |
98.12/98.56/99.77 |
|
|
87.2 |
Face recognition model trained on MS1Mv3 based on ResNet50 |
Note: The above accuracy metrics are Accuracy scores measured on the AgeDB-30, CFP-FP, and LFW datasets, respectively. All GPU inference times are based on an NVIDIA Tesla T4 machine with FP32 precision. CPU inference speeds are based on an Intel(R) Xeon(R) Gold 5117 CPU @ 2.00GHz with 8 threads and FP32 precision.
## 2. Quick Start
The pre-trained model pipelines provided by PaddleX can be quickly experienced. You can experience the effects of the face recognition pipeline online or locally using command-line or Python.
### 2.1 Online Experience
Oneline Experience is not supported at the moment.
### 2.2 Local Experience
> β Before using the facial recognition pipeline locally, please ensure that you have completed the installation of the PaddleX wheel package according to the [PaddleX Installation Guide](../../../installation/installation.md).
#### 2.2.1 Command Line Experience
Command line experience is not supported at the moment.
#### 2.2.2 Integration via Python Script
Please download the [test image](https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/friends1.jpg) for testing. In the example of running this pipeline, you need to pre-build a facial feature library. You can refer to the following instructions to download the official demo data to be used for subsequent construction of the facial feature library. You can use the following command to download the demo dataset to a specified folder:
```bash
cd /path/to/paddlex
wget https://paddle-model-ecology.bj.bcebos.com/paddlex/data/face_demo_gallery.tar
tar -xf ./face_demo_gallery.tar
```
If you wish to build a facial feature library using a private dataset, please refer to [Section 2.3: Data Organization for Building a Feature Library](#23-data-organization-for-building-a-feature-library). Afterward, you can complete the establishment of the facial feature library and quickly perform inference with the facial recognition pipeline using just a few lines of code.
```python
from paddlex import create_pipeline
pipeline = create_pipeline(pipeline="face_recognition")
pipeline.build_index(data_root="face_demo_gallery", index_dir="face_gallery_index")
output = pipeline.predict("friends1.jpg")
for res in output:
res.print()
res.save_to_img("./output/")
```
In the above Python script, the following steps are executed:
(1) Instantiate the `create_pipeline` to create a face recognition pipeline object. The specific parameter descriptions are as follows:
API Reference
For main operations provided by the service:
- The HTTP request method is POST.
- The request body and the response body are both JSON data (JSON objects).
- When the request is successfully processed, the response status code is
200, and the attributes of the response body are as follows:
| Name |
Type |
Meaning |
errorCode |
integer |
Error code. Fixed to 0. |
errorMsg |
string |
Error description. Fixed to "Success". |
The response body may also have a result attribute of type object, which stores the operation result information.
- When the request is not successfully processed, the attributes of the response body are as follows:
| Name |
Type |
Meaning |
errorCode |
integer |
Error code. Same as the response status code. |
errorMsg |
string |
Error description. |
The main operations provided by the service are as follows:
Obtain OCR results for an image.
POST /ocr
- The attributes of the request body are as follows:
| Name |
Type |
Meaning |
Required |
image |
string |
The URL of an accessible image file or the Base64 encoded result of the image file content. |
Yes |
inferenceParams |
object |
Inference parameters. |
No |
The attributes of```markdown
Python
import base64
import requests
API_URL = "http://localhost:8080/ocr" # Service URL
image_path = "./demo.jpg"
output_image_path = "./out.jpg"
# Encode the local image to Base64
with open(image_path, "rb") as file:
image_bytes = file.read()
image_data = base64.b64encode(image_bytes).decode("ascii")
payload = {"image": image_data} # Base64 encoded file content or image URL
# Call the API
response = requests.post(API_URL, json=payload)
# Process the response data
assert response.status_code == 200
result = response.json()["result"]
with open(output_image_path, "wb") as file:
file.write(base64.b64decode(result["image"]))
print(f"Output image saved at {output_image_path}")
print("\nDetected texts:")
print(result["texts"])
C++
#include <iostream>
#include "cpp-httplib/httplib.h" // https://github.com/Huiyicc/cpp-httplib
#include "nlohmann/json.hpp" // https://github.com/nlohmann/json
#include "base64.hpp" // https://github.com/tobiaslocker/base64
int main() {
httplib::Client client("localhost:8080");
const std::string imagePath = "./demo.jpg";
const std::string outputImagePath = "./out.jpg";
httplib::Headers headers = {
{"Content-Type", "application/json"}
};
// Encode the local image to Base64
std::ifstream file(imagePath, std::ios::binary | std::ios::ate);
std::streamsize size = file.tellg();
file.seekg(0, std::ios::beg);
std::vector<char> buffer(size);
if (!file.read(buffer.data(), size)) {
std::cerr << "Error reading file." << std::endl;
return 1;
}
std::string bufferStr(reinterpret_cast<const char*>(buffer.data()), buffer.size());
std::string encodedImage = base64::to_base64(bufferStr);
nlohmann::json jsonObj;
jsonObj["image"] = encodedImage;
std::string body = jsonObj.dump();
// Call the API
auto response = client.Post("/ocr", headers, body, "application/json");
// Process the response data
if (response && response->status == 200) {
nlohmann::json jsonResponse = nlohmann::json::parse(response->body);
auto result = jsonResponse["result"];
encodedImage = result["image"];
std::string decodedString = base64::from_base64(encodedImage);
std::vector<unsigned char> decodedImage(decodedString.begin(), decodedString.end());
std::ofstream outputImage(outputImagePath, std::ios::binary | std::ios::out);
if (outputImage.is_open()) {
outputImage.write(reinterpret_cast<char*>(decodedImage.data()), decodedImage.size());
outputImage.close();
std::cout << "Output image saved at " << outputImagePath << std::endl;
} else {
std::cerr << "Unable to open file for writing: " << outputImagePath << std::endl;
}
auto texts = result["texts"];
std::cout << "\nDetected texts:" << std::endl;
for (const auto& text : texts) {
std::cout << text << std::endl;
}
} else {
std::cout << "Failed to send HTTP request." << std::endl;
return 1;
}
return 0;
}
``````markdown
# Tutorial on Artificial Intelligence and Computer Vision
This tutorial, intended for numerous developers, covers the basics and applications of AI and Computer Vision.
Java
import okhttp3.*;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.fasterxml.jackson.databind.JsonNode;
import com.fasterxml.jackson.databind.node.ObjectNode;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.util.Base64;
public class Main {
public static void main(String[] args) throws IOException {
String API_URL = "http://localhost:8080/ocr"; // Service URL
String imagePath = "./demo.jpg"; // Local image path
String outputImagePath = "./out.jpg"; // Output image path
// Encode the local image to Base64
File file = new File(imagePath);
byte[] fileContent = java.nio.file.Files.readAllBytes(file.toPath());
String imageData = Base64.getEncoder().encodeToString(fileContent);
ObjectMapper objectMapper = new ObjectMapper();
ObjectNode params = objectMapper.createObjectNode();
params.put("image", imageData); // Base64-encoded file content or image URL
// Create an OkHttpClient instance
OkHttpClient client = new OkHttpClient();
MediaType JSON = MediaType.get("application/json; charset=utf-8");
RequestBody body = RequestBody.create(params.toString(), JSON);
Request request = new Request.Builder()
.url(API_URL)
.post(body)
.build();
// Call the API and process the response
try (Response response = client.newCall(request).execute()) {
if (response.isSuccessful()) {
String responseBody = response.body().string();
JsonNode resultNode = objectMapper.readTree(responseBody);
JsonNode result = resultNode.get("result");
String base64Image = result.get("image").asText();
JsonNode texts = result.get("texts");
byte[] imageBytes = Base64.getDecoder().decode(base64Image);
try (FileOutputStream fos = new FileOutputStream(outputImagePath)) {
fos.write(imageBytes);
}
System.out.println("Output image saved at " + outputImagePath);
System.out.println("\nDetected texts: " + texts.toString());
} else {
System.err.println("Request failed with code: " + response.code());
}
}
}
}
Go
package main
import (
"bytes"
"encoding/base64"
"encoding/json"
"fmt"
"io/ioutil"
"net/http"
)
func main() {
API_URL := "http://localhost:8080/ocr"
imagePath := "./demo.jpg"
outputImagePath := "./out.jpg"
// Encode the local image to Base64
imageBytes, err := ioutil.ReadFile(imagePath)
if err != nil {
fmt.Println("Error reading image file:", err)
return
}
imageData := base64.StdEncoding.EncodeToString(imageBytes)
payload := map[string]string{"image": imageData} // Base64-encoded file content or image URL
payloadBytes, err := json.Marshal(payload)
if err != nil {
fmt.Println("Error marshaling payload:", err)
return
}
// Call the API
client := &http.Client{}
req, err := http.NewRequest("POST", API_URL, bytes.NewBuffer(payloadBytes))
if err != nil {
fmt.Println("Error creating request:", err)
return
}
res, err := client.Do(req)
if err != nil {
fmt.Println("Error sending request:", err)
return
}
defer res.Body.Close()
// Process the response
body, err := ioutil.ReadAll(res.Body)
if err != nil {
fmt.Println("Error reading response body:", err)
return
}```markdown
# An English Tutorial on Artificial Intelligence and Computer Vision
This tutorial document is intended for numerous developers and covers content related to artificial intelligence and computer vision.
<details>
<summary>C#</summary>
```csharp
using System;
using System.IO;
using System.Net.Http;
using System.Net.Http.Headers;
using System.Text;
using System.Threading.Tasks;
using Newtonsoft.Json.Linq;
class Program
{
static readonly string API_URL = "http://localhost:8080/ocr";
static readonly string imagePath = "./demo.jpg";
static readonly string outputImagePath = "./out.jpg";
static async Task Main(string[] args)
{
var httpClient = new HttpClient();
// Encode the local image to Base64
byte[] imageBytes = File.ReadAllBytes(imagePath);
string image_data = Convert.ToBase64String(imageBytes);
var payload = new JObject{ { "image", image_data } }; // Base64 encoded file content or image URL
var content = new StringContent(payload.ToString(), Encoding.UTF8, "application/json");
// Call the API
HttpResponseMessage response = await httpClient.PostAsync(API_URL, content);
response.EnsureSuccessStatusCode();
// Process the API response
string responseBody = await response.Content.ReadAsStringAsync();
JObject jsonResponse = JObject.Parse(responseBody);
string base64Image = jsonResponse["result"]["image"].ToString();
byte[] outputImageBytes = Convert.FromBase64String(base64Image);
File.WriteAllBytes(outputImagePath, outputImageBytes);
Console.WriteLine($"Output image saved at {outputImagePath}");
Console.WriteLine("\nDetected texts:");
Console.WriteLine(jsonResponse["result"]["texts"].ToString());
}
}
Node.js
const axios = require('axios');
const fs = require('fs');
const API_URL = 'http://localhost:8080/ocr';
const imagePath = './demo.jpg';
const outputImagePath = "./out.jpg";
let config = {
method: 'POST',
maxBodyLength: Infinity,
url: API_URL,
data: JSON.stringify({
'image': encodeImageToBase64(imagePath) // Base64 encoded file content or image URL
})
};
// Encode the local image to Base64
function encodeImageToBase64(filePath) {
const bitmap = fs.readFileSync(filePath);
return Buffer.from(bitmap).toString('base64');
}
// Call the API
axios.request(config)
.then((response) => {
// Process the API response
const result = response.data["result"];
const imageBuffer = Buffer.from(result["image"], 'base64');
fs.writeFile(outputImagePath, imageBuffer, (err) => {
if (err) throw err;
console.log(`Output image saved at ${outputImagePath}`);
});
console.log("\nDetected texts:");
console.log(result["texts"]);
})
.catch((error) => {
console.log(error);
});
PHP
```php
$image_data); // Base64 encoded file content or image URL
// Call the API
$ch = curl_init($API_URL);
curl_setopt($ch, CURLOPT_POST, true);
curl_setopt($ch, CURLOPT_POSTFIELDS, json_encode($payload));
curl_setopt($ch, CURLOPT_HTTPHEADER, array('Content-Type: application/json'));
curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);
$response = curl_exec($ch);
curl_close($ch);
// Process the API response
$result = json_decode($response, true)["result"];
file_put_contents($output
```
π± Edge Deployment: Edge deployment is a method where computing and data processing functions are placed on the user's device itself, allowing the device to process data directly without relying on remote servers. PaddleX supports deploying models on edge devices such as Android. For detailed edge deployment procedures, please refer to the [PaddleX Edge Deployment Guide](../../../pipeline_deploy/edge_deploy.en.md).
You can choose an appropriate method to deploy your model pipeline based on your needs, and proceed with subsequent AI application integration.
## 4. Custom Development
If the default model weights provided by the Face Recognition Pipeline do not meet your expectations in terms of accuracy or speed for your specific scenario, you can try to further fine-tune the existing models using your own domain-specific or application-specific data to enhance the recognition performance of the pipeline in your scenario.
### 4.1 Model Fine-tuning
Since the Face Recognition Pipeline consists of two modules (face detection and face recognition), the suboptimal performance of the pipeline may stem from either module.
You can analyze images with poor recognition results. If you find that many faces are not detected during the analysis, it may indicate deficiencies in the face detection model. In this case, you need to refer to the [Custom Development](../../../module_usage/tutorials/cv_modules/face_detection.en.md#IV.-Custom-Development) section in the [Face Detection Module Development Tutorial](../../../module_usage/tutorials/cv_modules/face_detection.en.md) and use your private dataset to fine-tune the face detection model. If matching errors occur in detected faces, it suggests that the face feature model needs further improvement. You should refer to the [Custom Development](../../../module_usage/tutorials/cv_modules/face_feature.en.md#IV.-Custom-Development) section in the [Face Feature Module Development Tutorial](../../../module_usage/tutorials/cv_modules/face_feature.en.md) to fine-tune the face feature model.
### 4.2 Model Application
After completing fine-tuning training with your private dataset, you will obtain local model weight files.
To use the fine-tuned model weights, you only need to modify the pipeline configuration file by replacing the local paths of the fine-tuned model weights with the corresponding paths in the pipeline configuration file:
```bash
......
Pipeline:
device: "gpu:0"
det_model: "BlazeFace" # Can be modified to the local path of the fine-tuned face detection model
rec_model: "MobileFaceNet" # Can be modified to the local path of the fine-tuned face recognition model
det_batch_size: 1
rec_batch_size: 1
device: gpu
......
```
Subsequently, refer to the command-line method or Python script method in [2.2 Local Experience](#22-Local-Experience) to load the modified pipeline configuration file.
Note: Currently, setting separate `batch_size` for face detection and face recognition models is not supported.
## 5. Multi-hardware Support
PaddleX supports various mainstream hardware devices such as NVIDIA GPUs, Kunlun XPU, Ascend NPU, and Cambricon MLU. Simply modifying the `--device` parameter allows seamless switching between different hardware.
For example, when running the face recognition pipeline using Python and changing the running device from an NVIDIA GPU to an Ascend NPU, you only need to modify the `device` in the script to `npu`:
```python
from paddlex import create_pipeline
pipeline = create_pipeline(
pipeline="face_recognition",
device="npu:0" # gpu:0 --> npu:0
)
```
If you want to use the face recognition pipeline on more types of hardware, please refer to the [PaddleX Multi-device Usage Guide](../../../other_devices_support/multi_devices_use_guide.en.md).