# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..base import BaseTrainer from .model_list import MODELS class BEVFusionTrainer(BaseTrainer): """3D BEV Detection Model Trainer""" entities = MODELS def _update_dataset(self): """update dataset settings""" self.pdx_config.update_dataset( self.global_config.dataset_dir, self.global_config.get("datart_prefix", True), "NuscenesMMDataset", version=self.global_config.get("version", "mini"), ) def _update_pretrained_model(self): self.pdx_config.update_pretrained_model( self.global_config.load_cam_from, self.global_config.load_lidar_from ) def update_config(self): """update training config""" self._update_dataset() self._update_pretrained_model() if self.train_config.batch_size is not None: self.pdx_config.update_batch_size(self.train_config.batch_size) if self.train_config.learning_rate is not None: self.pdx_config.update_learning_rate(self.train_config.learning_rate) if self.train_config.epochs_iters is not None: self.pdx_config.update_epochs(self.train_config.epochs_iters) self.train_config.epochs_iters else: self.pdx_config.get_epochs_iters() if self.global_config.output is not None: self.pdx_config.update_save_dir(self.global_config.output) def get_train_kwargs(self) -> dict: """get key-value arguments of model training function Returns: dict: the arguments of training function. """ train_args = {"device": self.get_device()} train_args["dy2st"] = self.train_config.get("dy2st", False) # amp support 'O1', 'O2', 'OFF' train_args["amp"] = self.train_config.get("amp", "OFF") if self.global_config.output is not None: train_args["save_dir"] = self.global_config.output return train_args