# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ....modules.text_recognition.model_list import MODELS from ....utils.func_register import FuncRegister from ...common.batch_sampler import ImageBatchSampler from ...common.reader import ReadImage from ..base import BasePredictor from .processors import CTCLabelDecode, OCRReisizeNormImg, ToBatch from .result import TextRecResult class TextRecPredictor(BasePredictor): entities = MODELS _FUNC_MAP = {} register = FuncRegister(_FUNC_MAP) def __init__(self, *args, input_shape=None, **kwargs): super().__init__(*args, **kwargs) self.input_shape = input_shape self.pre_tfs, self.infer, self.post_op = self._build() def _build_batch_sampler(self): return ImageBatchSampler() def _get_result_class(self): return TextRecResult def _build(self): pre_tfs = {"Read": ReadImage(format="RGB")} for cfg in self.config["PreProcess"]["transform_ops"]: tf_key = list(cfg.keys())[0] assert tf_key in self._FUNC_MAP func = self._FUNC_MAP[tf_key] args = cfg.get(tf_key, {}) name, op = func(self, **args) if args else func(self) if op: pre_tfs[name] = op pre_tfs["ToBatch"] = ToBatch() infer = self.create_static_infer() post_op = self.build_postprocess(**self.config["PostProcess"]) return pre_tfs, infer, post_op def process(self, batch_data): batch_raw_imgs = self.pre_tfs["Read"](imgs=batch_data.instances) batch_imgs = self.pre_tfs["ReisizeNorm"](imgs=batch_raw_imgs) x = self.pre_tfs["ToBatch"](imgs=batch_imgs) batch_preds = self.infer(x=x) texts, scores = self.post_op(batch_preds) return { "input_path": batch_data.input_paths, "page_index": batch_data.page_indexes, "input_img": batch_raw_imgs, "rec_text": texts, "rec_score": scores, } @register("DecodeImage") def build_readimg(self, channel_first, img_mode): assert channel_first == False return "Read", ReadImage(format=img_mode) @register("RecResizeImg") def build_resize(self, image_shape): return "ReisizeNorm", OCRReisizeNormImg( rec_image_shape=image_shape, input_shape=self.input_shape ) def build_postprocess(self, **kwargs): if kwargs.get("name") == "CTCLabelDecode": return CTCLabelDecode( character_list=kwargs.get("character_dict"), ) else: raise Exception() @register("MultiLabelEncode") def foo(self, *args, **kwargs): return None, None @register("KeepKeys") def foo(self, *args, **kwargs): return None, None