#include #include #include #include // NOLINT #include #include #include #include #include #include "include/paddlex/paddlex.h" #include "include/paddlex/visualize.h" using namespace std::chrono; // NOLINT DEFINE_string(model_dir, "", "Path of openvino model xml file"); DEFINE_string(cfg_dir, "", "Path of PaddleX model yaml file"); DEFINE_string(image, "", "Path of test image file"); DEFINE_string(image_list, "", "Path of test image list file"); DEFINE_string(device, "CPU", "Device name"); DEFINE_string(save_dir, "", "Path to save visualized image"); DEFINE_int32(batch_size, 1, "Batch size of infering"); DEFINE_double(threshold, 0.5, "The minimum scores of target boxes which are shown"); int main(int argc, char** argv) { google::ParseCommandLineFlags(&argc, &argv, true); if (FLAGS_model_dir == "") { std::cerr << "--model_dir need to be defined" << std::endl; return -1; } if (FLAGS_cfg_dir == "") { std::cerr << "--cfg_dir need to be defined" << std::endl; return -1; } if (FLAGS_image == "" & FLAGS_image_list == "") { std::cerr << "--image or --image_list need to be defined" << std::endl; return -1; } // PaddleX::Model model; model.Init(FLAGS_model_dir, FLAGS_cfg_dir, FLAGS_device); int imgs = 1; auto colormap = PaddleX::GenerateColorMap(model.labels.size()); // 进行预测 if (FLAGS_image_list != "") { std::ifstream inf(FLAGS_image_list); if(!inf){ std::cerr << "Fail to open file " << FLAGS_image_list << std::endl; return -1; } std::string image_path; while (getline(inf, image_path)) { PaddleX::DetResult result; cv::Mat im = cv::imread(image_path, 1); model.predict(im, &result); if(FLAGS_save_dir != ""){ cv::Mat vis_img = PaddleX::Visualize(im, result, model.labels, colormap, FLAGS_threshold); std::string save_path = PaddleX::generate_save_path(FLAGS_save_dir, FLAGS_image); cv::imwrite(save_path, vis_img); std::cout << "Visualized output saved as " << save_path << std::endl; } } }else { PaddleX::DetResult result; cv::Mat im = cv::imread(FLAGS_image, 1); model.predict(im, &result); for (int i = 0; i < result.boxes.size(); ++i) { std::cout << "image file: " << FLAGS_image << std::endl; std::cout << ", predict label: " << result.boxes[i].category << ", label_id:" << result.boxes[i].category_id << ", score: " << result.boxes[i].score << ", box(xmin, ymin, w, h):(" << result.boxes[i].coordinate[0] << ", " << result.boxes[i].coordinate[1] << ", " << result.boxes[i].coordinate[2] << ", " << result.boxes[i].coordinate[3] << ")" << std::endl; } if(FLAGS_save_dir != ""){ // 可视化 cv::Mat vis_img = PaddleX::Visualize(im, result, model.labels, colormap, FLAGS_threshold); std::string save_path = PaddleX::generate_save_path(FLAGS_save_dir, FLAGS_image); cv::imwrite(save_path, vis_img); result.clear(); std::cout << "Visualized output saved as " << save_path << std::endl; } } return 0; }