# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from typing import Dict from pathlib import Path import numpy as np import cv2 from ...common.result import BaseCVResult, HtmlMixin, XlsxMixin class SingleTableRecognitionResult(BaseCVResult, HtmlMixin, XlsxMixin): """table recognition result""" def __init__(self, data: Dict) -> None: """Initializes the object with given data and sets up mixins for HTML and XLSX processing.""" super().__init__(data) HtmlMixin.__init__(self) # Initializes the HTML mixin functionality XlsxMixin.__init__(self) # Initializes the XLSX mixin functionality def _to_html(self) -> str: """Converts the prediction to its corresponding HTML representation. Returns: str: The HTML string representation of the prediction. """ return self["pred_html"] def _to_xlsx(self) -> str: """Converts the prediction HTML to an XLSX file path. Returns: str: The path to the XLSX file containing the prediction data. """ return self["pred_html"] def _to_img(self) -> np.ndarray: """ Convert the input image with table OCR predictions to an image with cell boundaries highlighted. Returns: np.ndarray: The input image with cell boundaries highlighted in red. """ input_img = self["table_ocr_pred"]["input_img"].copy() cell_box_list = self["cell_box_list"] for box in cell_box_list: x1, y1, x2, y2 = [int(pos) for pos in box] cv2.rectangle(input_img, (x1, y1), (x2, y2), (255, 0, 0), 2) return input_img class TableRecognitionResult(dict): """Layout Parsing Result""" def __init__(self, data) -> None: """Initializes a new instance of the class with the specified data.""" super().__init__(data) def save_results(self, save_path: str) -> None: """Save the table recognition results to the specified directory. Args: save_path (str): The directory path to save the results. """ if not os.path.isdir(save_path): return img_id = self["img_id"] layout_det_res = self["layout_det_res"] if len(layout_det_res) > 0: save_img_path = Path(save_path) / f"layout_det_result_img{img_id}.jpg" layout_det_res.save_to_img(save_img_path) input_params = self["input_params"] if input_params["use_doc_preprocessor"]: save_img_path = Path(save_path) / f"doc_preprocessor_result_img{img_id}.jpg" self["doc_preprocessor_res"].save_to_img(save_img_path) save_img_path = Path(save_path) / f"overall_ocr_result_img{img_id}.jpg" self["overall_ocr_res"].save_to_img(save_img_path) for tno in range(len(self["table_res_list"])): table_res = self["table_res_list"][tno] table_region_id = table_res["table_region_id"] save_img_path = ( Path(save_path) / f"table_res_cell_img{img_id}_region{table_region_id}.jpg" ) table_res.save_to_img(save_img_path) save_html_path = ( Path(save_path) / f"table_res_img{img_id}_region{table_region_id}.html" ) table_res.save_to_html(save_html_path) save_xlsx_path = ( Path(save_path) / f"table_res_img{img_id}_region{table_region_id}.xlsx" ) table_res.save_to_xlsx(save_xlsx_path) return