# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, Optional, Union import numpy as np from ...utils.pp_option import PaddlePredictorOption from ..base import BasePipeline # [TODO] 待更新models_new到models from ...models_new.video_classification.result import TopkVideoResult class VideoClassificationPipeline(BasePipeline): """Video Classification Pipeline""" entities = "video_classification" def __init__( self, config: Dict, device: str = None, pp_option: PaddlePredictorOption = None, use_hpip: bool = False, hpi_params: Optional[Dict[str, Any]] = None, ) -> None: """ Initializes the class with given configurations and options. Args: config (Dict): Configuration dictionary containing model and other parameters. device (str): The device to run the prediction on. Default is None. pp_option (PaddlePredictorOption): Options for PaddlePaddle predictor. Default is None. use_hpip (bool): Whether to use high-performance inference (hpip) for prediction. Defaults to False. hpi_params (Optional[Dict[str, Any]]): HPIP specific parameters. Default is None. """ super().__init__( device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_params=hpi_params ) video_classification_model_config = config["SubModules"]["VideoClassification"] self.video_classification_model = self.create_model( video_classification_model_config ) def predict( self, input: str | list[str] | np.ndarray | list[np.ndarray], topk: Union[int, None] = 1, **kwargs ) -> TopkVideoResult: """Predicts video classification results for the given input. Args: input (str | list[str] | np.ndarray | list[np.ndarray]): The input image(s) or path(s) to the images. topk: Union[int, None]: The number of top predictions to return. Defaults to 1. **kwargs: Additional keyword arguments that can be passed to the function. Returns: TopkVideoResult: The predicted top k results. """ yield from self.video_classification_model(input, topk=topk)