import paddlex as pdx from paddlex import transforms as T # 定义训练和验证时的transforms # API说明:https://github.com/PaddlePaddle/PaddleX/blob/release/2.0-rc/paddlex/cv/transforms/operators.py train_transforms = T.Compose([ T.RandomResizeByShort( short_sizes=[640, 672, 704, 736, 768, 800], max_size=1333, interp='CUBIC'), T.RandomHorizontalFlip(), T.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) eval_transforms = T.Compose([ T.ResizeByShort( short_size=800, max_size=1333, interp='CUBIC'), T.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) # 定义训练和验证所用的数据集 # API说明:https://github.com/PaddlePaddle/PaddleX/blob/develop/paddlex/cv/datasets/coco.py#L26 train_dataset = pdx.datasets.CocoDetection( data_dir='dataset/JPEGImages', ann_file='dataset/train.json', transforms=train_transforms, shuffle=True) eval_dataset = pdx.datasets.CocoDetection( data_dir='dataset/JPEGImages', ann_file='dataset/val.json', transforms=eval_transforms) # 初始化模型,并进行训练 # 可使用VisualDL查看训练指标,参考https://github.com/PaddlePaddle/PaddleX/tree/release/2.0-rc/tutorials/train#visualdl可视化训练指标 num_classes = len(train_dataset.labels) model = pdx.det.MaskRCNN( num_classes=num_classes, backbone='ResNet50', with_fpn=True) # API说明:https://github.com/PaddlePaddle/PaddleX/blob/release/2.0-rc/paddlex/cv/models/detector.py#L155 # 各参数介绍与调整说明:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html model.train( num_epochs=12, train_dataset=train_dataset, train_batch_size=1, eval_dataset=eval_dataset, learning_rate=0.00125, lr_decay_epochs=[8, 11], warmup_steps=10, warmup_start_lr=0.0, save_dir='output/mask_rcnn_r50_fpn', use_vdl=True)