# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, List, Optional, Union import numpy as np from ....utils import logging from ....utils.deps import pipeline_requires_extra from ...common.batch_sampler import ImageBatchSampler from ...common.reader import ReadImage from ...utils.hpi import HPIConfig from ...utils.pp_option import PaddlePredictorOption from ..base import BasePipeline from ..components import rotate_image from .result import DocPreprocessorResult @pipeline_requires_extra("ocr") class DocPreprocessorPipeline(BasePipeline): """Doc Preprocessor Pipeline""" entities = "doc_preprocessor" def __init__( self, config: Dict, device: Optional[str] = None, pp_option: Optional[PaddlePredictorOption] = None, use_hpip: bool = False, hpi_config: Optional[Union[Dict[str, Any], HPIConfig]] = None, ) -> None: """Initializes the doc preprocessor pipeline. Args: config (Dict): Configuration dictionary containing various settings. device (str, optional): Device to run the predictions on. Defaults to None. pp_option (PaddlePredictorOption, optional): PaddlePredictor options. Defaults to None. use_hpip (bool, optional): Whether to use the high-performance inference plugin (HPIP) by default. Defaults to False. hpi_config (Optional[Union[Dict[str, Any], HPIConfig]], optional): The default high-performance inference configuration dictionary. Defaults to None. """ super().__init__( device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_config=hpi_config ) self.use_doc_orientation_classify = config.get( "use_doc_orientation_classify", True ) if self.use_doc_orientation_classify: doc_ori_classify_config = config.get("SubModules", {}).get( "DocOrientationClassify", {"model_config_error": "config error for doc_ori_classify_model!"}, ) self.doc_ori_classify_model = self.create_model(doc_ori_classify_config) self.use_doc_unwarping = config.get("use_doc_unwarping", True) if self.use_doc_unwarping: doc_unwarping_config = config.get("SubModules", {}).get( "DocUnwarping", {"model_config_error": "config error for doc_unwarping_model!"}, ) self.doc_unwarping_model = self.create_model(doc_unwarping_config) self.batch_sampler = ImageBatchSampler(batch_size=1) self.img_reader = ReadImage(format="BGR") def check_model_settings_valid(self, model_settings: Dict) -> bool: """ Check if the the input params for model settings are valid based on the initialized models. Args: model_settings (Dict): A dictionary containing model settings. Returns: bool: True if all required models are initialized according to the model settings, False otherwise. """ if ( model_settings["use_doc_orientation_classify"] and not self.use_doc_orientation_classify ): logging.error( "Set use_doc_orientation_classify, but the model for doc orientation classify is not initialized." ) return False if model_settings["use_doc_unwarping"] and not self.use_doc_unwarping: logging.error( "Set use_doc_unwarping, but the model for doc unwarping is not initialized." ) return False return True def get_model_settings( self, use_doc_orientation_classify, use_doc_unwarping ) -> dict: """ Retrieve the model settings dictionary based on input parameters. Args: use_doc_orientation_classify (bool, optional): Whether to use document orientation classification. use_doc_unwarping (bool, optional): Whether to use document unwarping. Returns: dict: A dictionary containing the model settings. """ if use_doc_orientation_classify is None: use_doc_orientation_classify = self.use_doc_orientation_classify if use_doc_unwarping is None: use_doc_unwarping = self.use_doc_unwarping model_settings = { "use_doc_orientation_classify": use_doc_orientation_classify, "use_doc_unwarping": use_doc_unwarping, } return model_settings def predict( self, input: Union[str, List[str], np.ndarray, List[np.ndarray]], use_doc_orientation_classify: Optional[bool] = None, use_doc_unwarping: Optional[bool] = None, ) -> DocPreprocessorResult: """ Predict the preprocessing result for the input image or images. Args: input (Union[str, list[str], np.ndarray, list[np.ndarray]]): The input image(s) or path(s) to the images or pdfs. use_doc_orientation_classify (bool): Whether to use document orientation classification. use_doc_unwarping (bool): Whether to use document unwarping. **kwargs: Additional keyword arguments. Returns: DocPreprocessorResult: A generator yielding preprocessing results. """ model_settings = self.get_model_settings( use_doc_orientation_classify, use_doc_unwarping ) if not self.check_model_settings_valid(model_settings): yield {"error": "the input params for model settings are invalid!"} for img_id, batch_data in enumerate(self.batch_sampler(input)): image_array = self.img_reader(batch_data.instances)[0] if model_settings["use_doc_orientation_classify"]: pred = next(self.doc_ori_classify_model(image_array)) angle = int(pred["label_names"][0]) rot_img = rotate_image(image_array, angle) else: angle = -1 rot_img = image_array if model_settings["use_doc_unwarping"]: output_img = next(self.doc_unwarping_model(rot_img))["doctr_img"][ :, :, ::-1 ] else: output_img = rot_img single_img_res = { "input_path": batch_data.input_paths[0], "page_index": batch_data.page_indexes[0], "input_img": image_array, "model_settings": model_settings, "angle": angle, "rot_img": rot_img, "output_img": output_img, } yield DocPreprocessorResult(single_img_res)