# copyright (c) 2024 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import copy from pathlib import Path from PIL import Image, ImageDraw import re import numpy as np from PIL import Image from PIL import ImageDraw from ...common.result import ( BaseCVResult, HtmlMixin, JsonMixin, MarkdownMixin, XlsxMixin, ) from .utils import get_layout_ordering from .utils import recursive_img_array2path from .utils import get_show_color class LayoutParsingResultV2(BaseCVResult, HtmlMixin, XlsxMixin, MarkdownMixin): """Layout Parsing Result V2""" def __init__(self, data) -> None: """Initializes a new instance of the class with the specified data.""" super().__init__(data) HtmlMixin.__init__(self) XlsxMixin.__init__(self) MarkdownMixin.__init__(self) JsonMixin.__init__(self) def _get_input_fn(self): fn = super()._get_input_fn() if (page_idx := self["page_index"]) is not None: fp = Path(fn) stem, suffix = fp.stem, fp.suffix return f"{stem}_{page_idx}{suffix}" else: return fn def _to_img(self) -> dict[str, np.ndarray]: res_img_dict = {} model_settings = self["model_settings"] if model_settings["use_doc_preprocessor"]: for key, value in self["doc_preprocessor_res"].img.items(): res_img_dict[key] = value res_img_dict["layout_det_res"] = self["layout_det_res"].img["res"] if model_settings["use_general_ocr"] or model_settings["use_table_recognition"]: res_img_dict["overall_ocr_res"] = self["overall_ocr_res"].img["ocr_res_img"] if model_settings["use_table_recognition"] and len(self["table_res_list"]) > 0: table_cell_img = Image.fromarray( copy.deepcopy(self["doc_preprocessor_res"]["output_img"]) ) table_draw = ImageDraw.Draw(table_cell_img) rectangle_color = (255, 0, 0) for sno in range(len(self["table_res_list"])): table_res = self["table_res_list"][sno] cell_box_list = table_res["cell_box_list"] for box in cell_box_list: x1, y1, x2, y2 = [int(pos) for pos in box] table_draw.rectangle( [x1, y1, x2, y2], outline=rectangle_color, width=2 ) res_img_dict["table_cell_img"] = table_cell_img if model_settings["use_seal_recognition"] and len(self["seal_res_list"]) > 0: for sno in range(len(self["seal_res_list"])): seal_res = self["seal_res_list"][sno] seal_region_id = seal_res["seal_region_id"] sub_seal_res_dict = seal_res.img key = f"seal_res_region{seal_region_id}" res_img_dict[key] = sub_seal_res_dict["ocr_res_img"] # for layout ordering image image = Image.fromarray(self["doc_preprocessor_res"]["output_img"]) draw = ImageDraw.Draw(image, "RGBA") parsing_result = self["parsing_res_list"] for block in parsing_result: bbox = block["block_bbox"] index = block.get("index", None) label = block["sub_label"] fill_color = get_show_color(label) draw.rectangle(bbox, fill=fill_color) if index is not None: text_position = (bbox[2] + 2, bbox[1] - 10) draw.text(text_position, str(index), fill="red") res_img_dict["layout_order_res"] = image return res_img_dict def _to_str(self, *args, **kwargs) -> dict[str, str]: """Converts the instance's attributes to a dictionary and then to a string. Args: *args: Additional positional arguments passed to the base class method. **kwargs: Additional keyword arguments passed to the base class method. Returns: Dict[str, str]: A dictionary with the instance's attributes converted to strings. """ data = {} data["input_path"] = self["input_path"] data["page_index"] = self["page_index"] model_settings = self["model_settings"] data["model_settings"] = model_settings if self["model_settings"]["use_doc_preprocessor"]: data["doc_preprocessor_res"] = self["doc_preprocessor_res"].str["res"] data["layout_det_res"] = self["layout_det_res"].str["res"] if model_settings["use_general_ocr"] or model_settings["use_table_recognition"]: data["overall_ocr_res"] = self["overall_ocr_res"].str["res"] if model_settings["use_table_recognition"] and len(self["table_res_list"]) > 0: data["table_res_list"] = [] for sno in range(len(self["table_res_list"])): table_res = self["table_res_list"][sno] data["table_res_list"].append(table_res.str["res"]) if model_settings["use_seal_recognition"] and len(self["seal_res_list"]) > 0: data["seal_res_list"] = [] for sno in range(len(self["seal_res_list"])): seal_res = self["seal_res_list"][sno] data["seal_res_list"].append(seal_res.str["res"]) if ( model_settings["use_formula_recognition"] and len(self["formula_res_list"]) > 0 ): data["formula_res_list"] = [] for sno in range(len(self["formula_res_list"])): formula_res = self["formula_res_list"][sno] data["formula_res_list"].append(formula_res.str["res"]) return JsonMixin._to_str(data, *args, **kwargs) def _to_json(self, *args, **kwargs) -> dict[str, str]: """ Converts the object's data to a JSON dictionary. Args: *args: Positional arguments passed to the JsonMixin._to_json method. **kwargs: Keyword arguments passed to the JsonMixin._to_json method. Returns: Dict[str, str]: A dictionary containing the object's data in JSON format. """ data = {} data["input_path"] = self["input_path"] data["page_index"] = self["page_index"] model_settings = self["model_settings"] data["model_settings"] = model_settings parsing_res_list = self["parsing_res_list"] parsing_res_list = [ { "block_label": parsing_res["block_label"], "block_content": parsing_res["block_content"], "block_bbox": parsing_res["block_bbox"], } for parsing_res in parsing_res_list ] data["parsing_res_list"] = parsing_res_list if self["model_settings"]["use_doc_preprocessor"]: data["doc_preprocessor_res"] = self["doc_preprocessor_res"].json["res"] data["layout_det_res"] = self["layout_det_res"].json["res"] if model_settings["use_general_ocr"] or model_settings["use_table_recognition"]: data["overall_ocr_res"] = self["overall_ocr_res"].json["res"] if model_settings["use_table_recognition"] and len(self["table_res_list"]) > 0: data["table_res_list"] = [] for sno in range(len(self["table_res_list"])): table_res = self["table_res_list"][sno] data["table_res_list"].append(table_res.json["res"]) if model_settings["use_seal_recognition"] and len(self["seal_res_list"]) > 0: data["seal_res_list"] = [] for sno in range(len(self["seal_res_list"])): seal_res = self["seal_res_list"][sno] data["seal_res_list"].append(seal_res.json["res"]) if ( model_settings["use_formula_recognition"] and len(self["formula_res_list"]) > 0 ): data["formula_res_list"] = [] for sno in range(len(self["formula_res_list"])): formula_res = self["formula_res_list"][sno] data["formula_res_list"].append(formula_res.json["res"]) return JsonMixin._to_json(data, *args, **kwargs) def _to_html(self) -> dict[str, str]: """Converts the prediction to its corresponding HTML representation. Returns: Dict[str, str]: The str type HTML representation result. """ model_settings = self["model_settings"] res_html_dict = {} if model_settings["use_table_recognition"] and len(self["table_res_list"]) > 0: for sno in range(len(self["table_res_list"])): table_res = self["table_res_list"][sno] table_region_id = table_res["table_region_id"] key = f"table_{table_region_id}" res_html_dict[key] = table_res.html["pred"] return res_html_dict def _to_xlsx(self) -> dict[str, str]: """Converts the prediction HTML to an XLSX file path. Returns: Dict[str, str]: The str type XLSX representation result. """ model_settings = self["model_settings"] res_xlsx_dict = {} if model_settings["use_table_recognition"] and len(self["table_res_list"]) > 0: for sno in range(len(self["table_res_list"])): table_res = self["table_res_list"][sno] table_region_id = table_res["table_region_id"] key = f"table_{table_region_id}" res_xlsx_dict[key] = table_res.xlsx["pred"] return res_xlsx_dict def _to_markdown(self) -> dict: """ Save the parsing result to a Markdown file. Returns: Dict """ recursive_img_array2path(self["parsing_res_list"], labels=["block_image"]) def _format_data(obj): def format_title(content_value): content_value = content_value.rstrip(".") level = ( content_value.count( ".", ) + 1 if "." in content_value else 1 ) return f"{'#' * level} {content_value}".replace("-\n", "").replace( "\n", " ", ) def format_centered_text(key): return ( f'