---
comments: true
---
# PaddleX Model List (Huawei Ascend NPU)
PaddleX incorporates multiple pipelines, each containing several modules, and each module encompasses various models. You can select the appropriate models based on the benchmark data below. If you prioritize model accuracy, choose models with higher accuracy. If you prioritize model size, select models with smaller storage requirements.
## Image Classification Module
| Model Name |
Top-1 Accuracy (%) |
Model Size (M) |
| CLIP_vit_base_patch16_224 |
85.36 |
306.5 M |
| CLIP_vit_large_patch14_224 |
88.1 |
1.04 G |
| ConvNeXt_base_224 |
83.84 |
313.9 M |
| ConvNeXt_base_384 |
84.90 |
313.9 M |
| ConvNeXt_large_224 |
84.26 |
700.7 M |
| ConvNeXt_large_384 |
85.27 |
700.7 M |
| ConvNeXt_small |
83.13 |
178.0 M |
| ConvNeXt_tiny |
82.03 |
101.4 M |
| MobileNetV1_x0_5 |
63.5 |
4.8 M |
| MobileNetV1_x0_25 |
51.4 |
1.8 M |
| MobileNetV1_x0_75 |
68.8 |
9.3 M |
| MobileNetV1_x1_0 |
71.0 |
15.2 M |
| MobileNetV2_x0_5 |
65.0 |
7.1 M |
| MobileNetV2_x0_25 |
53.2 |
5.5 M |
| MobileNetV2_x1_0 |
72.2 |
12.6 M |
| MobileNetV2_x1_5 |
74.1 |
25.0 M |
| MobileNetV2_x2_0 |
75.2 |
41.2 M |
| MobileNetV3_large_x0_5 |
69.2 |
9.6 M |
| MobileNetV3_large_x0_35 |
64.3 |
7.5 M |
| MobileNetV3_large_x0_75 |
73.1 |
14.0 M |
| MobileNetV3_large_x1_0 |
75.3 |
19.5 M |
| MobileNetV3_large_x1_25 |
76.4 |
26.5 M |
| MobileNetV3_small_x0_5 |
59.2 |
6.8 M |
| MobileNetV3_small_x0_35 |
53.0 |
6.0 M |
| MobileNetV3_small_x0_75 |
66.0 |
8.5 M |
| MobileNetV3_small_x1_0 |
68.2 |
10.5 M |
| MobileNetV3_small_x1_25 |
70.7 |
13.0 M |
| MobileNetV4_conv_large |
83.4 |
125.2 M |
| MobileNetV4_conv_medium |
79.9 |
37.6 M |
| MobileNetV4_conv_small |
74.6 |
14.7 M |
| PP-HGNet_base |
85.0 |
249.4 M |
| PP-HGNet_small |
81.51 |
86.5 M |
| PP-HGNet_tiny |
79.83 |
52.4 M |
| PP-HGNetV2-B0 |
77.77 |
21.4 M |
| PP-HGNetV2-B1 |
79.18 |
22.6 M |
| PP-HGNetV2-B2 |
81.74 |
39.9 M |
| PP-HGNetV2-B3 |
82.98 |
57.9 M |
| PP-HGNetV2-B4 |
83.57 |
70.4 M |
| PP-HGNetV2-B5 |
84.75 |
140.8 M |
| PP-HGNetV2-B6 |
86.30 |
268.4 M |
| PP-LCNet_x0_5 |
63.14 |
6.7 M |
| PP-LCNet_x0_25 |
51.86 |
5.5 M |
| PP-LCNet_x0_35 |
58.09 |
5.9 M |
| PP-LCNet_x0_75 |
68.18 |
8.4 M |
| PP-LCNet_x1_0 |
71.32 |
10.5 M |
| PP-LCNet_x1_5 |
73.71 |
16.0 M |
| PP-LCNet_x2_0 |
75.18 |
23.2 M |
| PP-LCNet_x2_5 |
76.60 |
32.1 M |
| PP-LCNetV2_base |
77.05 |
23.7 M |
| PP-LCNetV2_large |
78.51 |
37.3 M |
| PP-LCNetV2_small |
73.97 |
14.6 M |
| ResNet18_vd |
72.3 |
41.5 M |
| ResNet18 |
71.0 |
41.5 M |
| ResNet34_vd |
76.0 |
77.3 M |
| ResNet34 |
74.6 |
77.3 M |
| ResNet50_vd |
79.1 |
90.8 M |
| ResNet50 |
76.5 |
90.8 M |
| ResNet101_vd |
80.2 |
158.4 M |
| ResNet101 |
77.6 |
158.7 M |
| ResNet152_vd |
80.6 |
214.3 M |
| ResNet152 |
78.3 |
214.2 M |
| ResNet200_vd |
80.9 |
266.0 M |
| SwinTransformer_base_patch4_window7_224 |
83.37 |
310.5 M |
| SwinTransformer_base_patch4_window12_384 |
84.17 |
311.4 M |
| SwinTransformer_large_patch4_window7_224 |
86.19 |
694.8 M |
| SwinTransformer_large_patch4_window12_384 |
87.06 |
696.1 M |
| SwinTransformer_small_patch4_window7_224 |
83.21 |
175.6 M |
| SwinTransformer_tiny_patch4_window7_224 |
81.10 |
100.1 M |
Note: The above accuracy metrics refer to Top-1 Accuracy on the [ImageNet-1k](https://www.image-net.org/index.php) validation set.
## [图像多标签分类模块](../module_usage/tutorials/cv_modules/image_multilabel_classification.md)
| 模型名称 |
mAP(%) |
模型存储大小 |
| CLIP_vit_base_patch16_448_ML |
89.15 |
325.6 M |
| PP-HGNetV2-B0_ML |
80.98 |
39.6 M |
| PP-HGNetV2-B4_ML |
87.96 |
88.5 M |
| PP-HGNetV2-B6_ML |
91.25 |
286.5 M |
注:以上精度指标为 [COCO2017](https://cocodataset.org/#home) 的多标签分类任务mAP。
## Object Detection Module
| Model Name |
mAP (%) |
Model Size (M) |
| Cascade-FasterRCNN-ResNet50-FPN |
41.1 |
245.4 M |
| Cascade-FasterRCNN-ResNet50-vd-SSLDv2-FPN |
45.0 |
246.2 M |
| CenterNet-DLA-34 |
37.6 |
75.4 M |
| CenterNet-ResNet50 |
38.9 |
319.7 M |
| DETR-R50 |
42.3 |
159.3 M |
| FasterRCNN-ResNet34-FPN |
37.8 |
137.5 M |
| FasterRCNN-ResNet50 |
36.7 |
120.2 M |
| FasterRCNN-ResNet50-FPN |
38.4 |
148.1 M |
| FasterRCNN-ResNet50-vd-FPN |
39.5 |
148.1 M |
| FasterRCNN-ResNet50-vd-SSLDv2-FPN |
41.4 |
148.1 M |
| FasterRCNN-ResNet101 |
39.0 |
188.1 M |
| FasterRCNN-ResNet101-FPN |
41.4 |
216.3 M |
| FasterRCNN-ResNeXt101-vd-FPN |
43.4 |
360.6 M |
| FasterRCNN-Swin-Tiny-FPN |
42.6 |
159.8 M |
| FCOS-ResNet50 |
39.6 |
124.2 M |
| PicoDet-L |
42.6 |
20.9 M |
| PicoDet-M |
37.5 |
16.8 M |
| PicoDet-S |
29.1 |
4.4 M |
| PicoDet-XS |
26.2 |
5.7M |
| PP-YOLOE_plus-L |
52.9 |
185.3 M |
| PP-YOLOE_plus-M |
49.8 |
83.2 M |
| PP-YOLOE_plus-S |
43.7 |
28.3 M |
| PP-YOLOE_plus-X |
54.7 |
349.4 M |
| RT-DETR-H |
56.3 |
435.8 M |
| RT-DETR-L |
53.0 |
113.7 M |
| RT-DETR-R18 |
46.5 |
70.7 M |
| RT-DETR-R50 |
53.1 |
149.1 M |
| RT-DETR-X |
54.8 |
232.9 M |
| YOLOv3-DarkNet53 |
39.1 |
219.7 M |
| YOLOv3-MobileNetV3 |
31.4 |
83.8 M |
| YOLOv3-ResNet50_vd_DCN |
40.6 |
163.0 M |
Note: The above accuracy metrics are for [COCO2017](https://cocodataset.org/#home) validation set mAP(0.5:0.95).
## [小目标检测模块](../module_usage/tutorials/cv_modules/small_object_detection.md)
| 模型名称 |
mAP(%) |
模型存储大小 |
| PP-YOLOE_plus_SOD-S |
25.1 |
77.3 M |
| PP-YOLOE_plus_SOD-L |
31.9 |
325.0 M |
| PP-YOLOE_plus_SOD-largesize-L |
42.7 |
340.5 M |
注:以上精度指标为 [VisDrone-DET](https://github.com/VisDrone/VisDrone-Dataset) 验证集 mAP(0.5:0.95)。
## [行人检测模块](../module_usage/tutorials/cv_modules/human_detection.md)
| 模型名称 |
mAP(%) |
模型存储大小 |
| PP-YOLOE-L_human |
48.0 |
196.1 M |
| PP-YOLOE-S_human |
42.5 |
28.8 M |
注:以上精度指标为 [CrowdHuman](https://bj.bcebos.com/v1/paddledet/data/crowdhuman.zip) 验证集 mAP(0.5:0.95)。
## Semantic Segmentation Module
| Model Name |
mIoU (%) |
Model Size (M) |
| Deeplabv3_Plus-R50 |
80.36 |
94.9 M |
| Deeplabv3_Plus-R101 |
81.10 |
162.5 M |
| Deeplabv3-R50 |
79.90 |
138.3 M |
| Deeplabv3-R101 |
80.85 |
205.9 M |
| OCRNet_HRNet-W48 |
82.15 |
249.8 M |
| PP-LiteSeg-T |
73.10 |
28.5 M |
Note: The above accuracy metrics are for [Cityscapes](https://www.cityscapes-dataset.com/) dataset mIoU.
## Instance Segmentation Module
| Model Name |
Mask AP |
Model Size (M) |
| Mask-RT-DETR-H |
50.6 |
449.9 M |
| Mask-RT-DETR-L |
45.7 |
113.6 M |
| Mask-RT-DETR-M |
42.7 |
66.6 M |
| Mask-RT-DETR-S |
41.0 |
51.8 M |
| Mask-RT-DETR-X |
47.5 |
237.5 M |
| Cascade-MaskRCNN-ResNet50-FPN |
36.3 |
254.8 M |
| Cascade-MaskRCNN-ResNet50-vd-SSLDv2-FPN |
39.1 |
254.7 M |
| MaskRCNN-ResNet50-FPN |
35.6 |
157.5 M |
| MaskRCNN-ResNet50-vd-FPN |
36.4 |
157.5 M |
| MaskRCNN-ResNet50 |
32.8 |
127.8 M |
| MaskRCNN-ResNet101-FPN |
36.6 |
225.4 M |
| MaskRCNN-ResNet101-vd-FPN |
38.1 |
225.1 M |
| MaskRCNN-ResNeXt101-vd-FPN |
39.5 |
370.0 M |
| PP-YOLOE_seg-S |
32.5 |
31.5 M |
Note: The above accuracy metrics are for [COCO2017](https://cocodataset.org/#home) validation set Mask AP(0.5:0.95).
## [图像特征模块](../module_usage/tutorials/cv_modules/image_feature.md)
| 模型名称 |
recall@1(%) |
模型存储大小 |
| PP-ShiTuV2_rec_CLIP_vit_base |
88.69 |
306.6 M |
| PP-ShiTuV2_rec_CLIP_vit_large |
91.03 |
1.05 G |
注:以上精度指标为 AliProducts recall@1。
## [主体检测模块](../module_usage/tutorials/cv_modules/mainbody_detection.md)
| 模型名称 |
mAP(%) |
模型存储大小 |
| PP-ShiTuV2_det |
41.5 |
27.6 M |
注:以上精度指标为 [PaddleClas主体检测数据集](https://github.com/PaddlePaddle/PaddleClas/blob/release/2.5/docs/zh_CN/training/PP-ShiTu/mainbody_detection.md) mAP(0.5:0.95)。
## [车辆检测模块](../module_usage/tutorials/cv_modules/vehicle_detection.md)
| 模型名称 |
mAP(%) |
模型存储大小 |
| PP-YOLOE-L_vehicle |
63.9 |
196.1 M |
| PP-YOLOE-S_vehicle |
61.3 |
28.8 M |
注:以上精度指标为 [PPVehicle](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/ppvehicle) 验证集 mAP(0.5:0.95)。
## [异常检测模块](../module_usage/tutorials/cv_modules/anomaly_detection.md)
| 模型名称 |
Avg(%) |
模型存储大小 |
| STFPM |
96.2 |
21.5 M |
注:以上精度指标为 [MVTec AD](https://www.mvtec.com/company/research/datasets/mvtec-ad) 验证集 平均异常分数。
## Text Detection Module
| Model Name |
Detection Hmean (%) |
Model Size (M) |
| PP-OCRv4_mobile_det |
77.79 |
4.2 M |
| PP-OCRv4_server_det |
82.69 |
100.1 M |
Note: The above accuracy metrics are evaluated on PaddleOCR's self-built Chinese dataset, covering street scenes, web images, documents, and handwritten scenarios, with 500 images for detection.
## Text Recognition Module
| Model Name |
Recognition Avg Accuracy (%) |
Model Size (M) |
| PP-OCRv4_mobile_rec |
78.20 |
10.6 M |
| PP-OCRv4_server_rec |
79.20 |
71.2 M |
Note: The above accuracy metrics are evaluated on PaddleOCR's self-built Chinese dataset, covering street scenes, web images, documents, and handwritten scenarios, with 11,000 images for text recognition.
| Model Name |
Recognition Avg Accuracy (%) |
Model Size (M) |
| ch_SVTRv2_rec |
68.81 |
73.9 M |
Note: The above accuracy metrics are evaluated on the [PaddleOCR Algorithm Model Challenge - Task 1: OCR End-to-End Recognition](https://aistudio.baidu.com/competition/detail/1131/0/introduction) A-Rank.
| Model Name |
Recognition Avg Accuracy (%) |
Model Size (M) |
| ch_RepSVTR_rec |
65.07 |
22.1 M |
Note: The above accuracy metrics are evaluated on the [PaddleOCR Algorithm Model Challenge - Task 1: OCR End-to-End Recognition](https://aistudio.baidu.com/competition/detail/1131/0/introduction) B-Rank.
## Table Structure Recognition Module
| Model Name |
Accuracy (%) |
Model Size (M) |
| SLANet |
76.31 |
6.9 M |
Note: The above accuracy metrics are measured on the PubtabNet English table recognition dataset.
## Layout Analysis Module
| Model Name |
mAP (%) |
Model Size (M) |
| PicoDet_layout_1x |
86.8 |
7.4M |
| PicoDet-L_layout_3cls |
89.3 |
22.6 M |
| RT-DETR-H_layout_3cls |
95.9 |
470.1 M |
| RT-DETR-H_layout_17cls |
92.6 |
470.2 M |
Note: The evaluation set for the above accuracy metrics is PaddleOCR's self-built layout analysis dataset, containing 10,000 images.
## Time Series Forecasting Module
| Model Name |
MSE |
MAE |
Model Size (M) |
| DLinear |
0.382 |
0.394 |
72K |
| NLinear |
0.386 |
0.392 |
40K |
| Nonstationary |
0.600 |
0.515 |
55.5 M |
| PatchTST |
0.385 |
0.397 |
2.0M |
| RLinear |
0.384 |
0.392 |
40K |
| TiDE |
0.405 |
0.412 |
31.7M |
| TimesNet |
0.417 |
0.431 |
4.9M |
Note: The above accuracy metrics are measured on the [ETTH1](https://paddle-model-ecology.bj.bcebos.com/paddlex/data/Etth1.tar) dataset (evaluation results on the test set test.csv).
## Time Series Anomaly Detection Module
| Model Name |
Precision |
Recall |
F1-Score |
Model Size (M) |
| AutoEncoder_ad |
99.36 |
84.36 |
91.25 |
52K |
| DLinear_ad |
98.98 |
93.96 |
96.41 |
112K |
| Nonstationary_ad |
98.55 |
88.95 |
93.51 |
1.8M |
| PatchTST_ad |
98.78 |
90.70 |
94.57 |
320K |
| TimesNet_ad |
98.37 |
94.80 |
96.56 |
1.3M |
Note: The above accuracy metrics are measured on the [PSM](https://paddle-model-ecology.bj.bcebos.com/paddlex/data/ts_anomaly_examples.tar) dataset.
## Time Series Classification Module
| Model Name |
Acc (%) |
Model Size (M) |
| TimesNet_cls |
87.5 |
792K |
Note: The above accuracy metrics are measured on the UWaveGestureLibrary: [Training](https://paddlets.bj.bcebos.com/classification/UWaveGestureLibrary_TRAIN.csv), [Evaluation](https://paddlets.bj.bcebos.com/classification/UWaveGestureLibrary_TEST.csv) datasets.