# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, Dict, Optional, Union from ....utils.deps import pipeline_requires_extra from ...models.doc_vlm.result import DocVLMResult from ...utils.hpi import HPIConfig from ...utils.pp_option import PaddlePredictorOption from ..base import BasePipeline @pipeline_requires_extra("multimodal") class DocUnderstandingPipeline(BasePipeline): """Doc Understanding Pipeline""" entities = "doc_understanding" def __init__( self, config: Dict, device: str = None, pp_option: PaddlePredictorOption = None, use_hpip: bool = False, hpi_config: Optional[Union[Dict[str, Any], HPIConfig]] = None, ) -> None: """ Initializes the class with given configurations and options. Args: config (Dict): Configuration dictionary containing model and other parameters. device (str): The device to run the prediction on. Default is None. pp_option (PaddlePredictorOption): Options for PaddlePaddle predictor. Default is None. use_hpip (bool, optional): Whether to use the high-performance inference plugin (HPIP) by default. Defaults to False. hpi_config (Optional[Union[Dict[str, Any], HPIConfig]], optional): The default high-performance inference configuration dictionary. Defaults to None. """ super().__init__( device=device, pp_option=pp_option, use_hpip=use_hpip, hpi_config=hpi_config ) doc_understanding_model_config = config.get("SubModules", {}).get( "DocUnderstanding", {"model_config_error": "config error for doc_understanding_model!"}, ) self.doc_understanding_model = self.create_model(doc_understanding_model_config) def predict(self, input: Dict, **kwargs) -> DocVLMResult: """Predicts doc understanding results for the given input. Args: input (dict): The input image and query. **kwargs: Additional keyword arguments that can be passed to the function. Returns: DocVLMResult: The predicted doc understanding results. """ yield from self.doc_understanding_model(input, **kwargs)