// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include #include "model_deploy/common/include/multi_gpu_model.h" DEFINE_string(model_filename, "", "Path of det inference model"); DEFINE_string(params_filename, "", "Path of det inference params"); DEFINE_string(cfg_file, "", "Path of yaml file"); DEFINE_string(model_type, "", "model type"); DEFINE_string(image_list, "", "Path of test image file"); DEFINE_string(gpu_id, "0", "GPU card id, example: 0,2,3"); DEFINE_int32(batch_size, 1, "Batch size of infering"); DEFINE_int32(thread_num, 1, "thread num of preprocessing"); int main(int argc, char** argv) { google::ParseCommandLineFlags(&argc, &argv, true); std::vector gpu_ids; std::stringstream gpu_ids_str(FLAGS_gpu_id); std::string temp; while (getline(gpu_ids_str, temp, ',')) { gpu_ids.push_back(std::stoi(temp)); } for (auto gpu_id : gpu_ids) { std::cout << "gpu_id:" << gpu_id << std::endl; } std::cout << "start create model" << std::endl; // create model PaddleDeploy::MultiGPUModel model; if (!model.Init(FLAGS_model_type, FLAGS_cfg_file, gpu_ids.size())) { return -1; } // engine init PaddleDeploy::PaddleEngineConfig engine_config; engine_config.model_filename = FLAGS_model_filename; engine_config.params_filename = FLAGS_params_filename; engine_config.use_gpu = true; engine_config.max_batch_size = FLAGS_batch_size; if (!model.PaddleEngineInit(engine_config, gpu_ids)) { return -1; } // Mini-batch if (FLAGS_image_list == "") { std::cerr << "image_list should be defined" << std::endl; return -1; } std::vector image_paths; std::ifstream inf(FLAGS_image_list); if (!inf) { std::cerr << "Fail to open file " << FLAGS_image_list << std::endl; return -1; } std::string image_path; while (getline(inf, image_path)) { image_paths.push_back(image_path); } std::cout << "start model predict " << image_paths.size() << std::endl; // infer std::vector results; for (int i = 0; i < image_paths.size(); i += FLAGS_batch_size) { // Read image int im_vec_size = std::min(static_cast(image_paths.size()), i + FLAGS_batch_size); std::vector im_vec(im_vec_size - i); #pragma omp parallel for num_threads(im_vec_size - i) for (int j = i; j < im_vec_size; ++j) { im_vec[j - i] = std::move(cv::imread(image_paths[j], 1)); } model.Predict(im_vec, &results, FLAGS_thread_num); std::cout << i / FLAGS_batch_size << " group" << std::endl; for (auto j = 0; j < results.size(); ++j) { std::cout << "Result for sample " << j << std::endl; std::cout << results[j] << std::endl; } } return 0; }