import paddlex as pdx from paddlex import transforms as T # 定义训练和验证时的transforms # API说明:https://github.com/PaddlePaddle/PaddleX/blob/release/2.0-rc/paddlex/cv/transforms/operators.py train_transforms = T.Compose([ T.Resize(target_size=512), T.RandomHorizontalFlip(), T.Normalize( mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), ]) eval_transforms = T.Compose([ T.Resize(target_size=512), T.Normalize( mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]), ]) # 下载和解压指针刻度分割数据集,如果已经预先下载,可注释掉下面两行 meter_seg_dataset = 'https://bj.bcebos.com/paddlex/examples/meter_reader/datasets/meter_seg.tar.gz' pdx.utils.download_and_decompress(meter_seg_dataset, path='./') # 定义训练和验证所用的数据集 # API说明:https://github.com/PaddlePaddle/PaddleX/blob/release/2.0-rc/paddlex/cv/datasets/seg_dataset.py#L22 train_dataset = pdx.datasets.SegDataset( data_dir='meter_seg', file_list='meter_seg/train.txt', label_list='meter_seg/labels.txt', transforms=train_transforms, shuffle=True) eval_dataset = pdx.datasets.SegDataset( data_dir='meter_seg', file_list='meter_seg/val.txt', label_list='meter_seg/labels.txt', transforms=eval_transforms, shuffle=False) # 初始化模型,并进行训练 # 可使用VisualDL查看训练指标,参考https://github.com/PaddlePaddle/PaddleX/tree/release/2.0-rc/tutorials/train#visualdl可视化训练指标 num_classes = len(train_dataset.labels) model = pdx.seg.DeepLabV3P( num_classes=num_classes, backbone='ResNet50_vd', use_mixed_loss=True) # API说明:https://github.com/PaddlePaddle/PaddleX/blob/release/2.0-rc/paddlex/cv/models/segmenter.py#L150 # 各参数介绍与调整说明:https://paddlex.readthedocs.io/zh_CN/develop/appendix/parameters.html model.train( num_epochs=20, train_dataset=train_dataset, train_batch_size=4, eval_dataset=eval_dataset, pretrain_weights='IMAGENET', learning_rate=0.1, save_dir='output/deeplabv3p_r50vd')