// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "ultra_infer/ultra_infer_model.h" #include "ultra_infer/vision/common/processors/transform.h" #include "ultra_infer/vision/common/result.h" namespace ultra_infer { namespace vision { namespace facealign { /*! @brief PIPNet model object used when to load a PIPNet model exported by * PIPNet. */ class ULTRAINFER_DECL PIPNet : public UltraInferModel { public: /** \brief Set path of model file and the configuration of runtime. * * \param[in] model_file Path of model file, e.g ./pipnet.onnx * \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams, * if the model format is ONNX, this parameter will be ignored \param[in] * custom_option RuntimeOption for inference, the default will use cpu, and * choose the backend defined in "valid_cpu_backends" \param[in] model_format * Model format of the loaded model, default is ONNX format */ PIPNet(const std::string &model_file, const std::string ¶ms_file = "", const RuntimeOption &custom_option = RuntimeOption(), const ModelFormat &model_format = ModelFormat::ONNX); std::string ModelName() const { return "PIPNet"; } /** \brief Predict the face detection result for an input image * * \param[in] im The input image data, comes from cv::imread(), is a 3-D array * with layout HWC, BGR format \param[in] result The output face detection * result will be written to this structure \return true if the prediction * succeeded, otherwise false */ virtual bool Predict(cv::Mat *im, FaceAlignmentResult *result); /** \brief Get the number of landmakrs * * \return Integer type, default num_landmarks = 19 */ int GetNumLandmarks() { return num_landmarks_; } /** \brief Get the mean values for normalization * * \return Vector of float values, default mean_vals = {0.485f, 0.456f, * 0.406f} */ std::vector GetMeanVals() { return mean_vals_; } /** \brief Get the std values for normalization * * \return Vector of float values, default std_vals = {0.229f, 0.224f, 0.225f} */ std::vector GetStdVals() { return std_vals_; } /** \brief Get the input size of image * * \return Vector of int values, default {256, 256} */ std::vector GetSize() { return size_; } /** \brief Set the number of landmarks * * \param[in] num_landmarks Integer value which represents number of landmarks */ void SetNumLandmarks(const int &num_landmarks); /** \brief Set the mean values for normalization * * \param[in] mean_vals Vector of float values whose length is equal to 3 */ void SetMeanVals(const std::vector &mean_vals) { mean_vals_ = mean_vals; } /** \brief Set the std values for normalization * * \param[in] std_vals Vector of float values whose length is equal to 3 */ void SetStdVals(const std::vector &std_vals) { std_vals_ = std_vals; } /** \brief Set the input size of image * * \param[in] size Vector of int values which represents {width, height} of * image */ void SetSize(const std::vector &size) { size_ = size; } private: bool Initialize(); bool Preprocess(Mat *mat, FDTensor *outputs, std::map> *im_info); bool Postprocess(std::vector &infer_result, FaceAlignmentResult *result, const std::map> &im_info); void GenerateLandmarks(std::vector &infer_result, FaceAlignmentResult *result, float img_height, float img_width); std::map num_lms_map_; std::map max_len_map_; std::map> reverse_index1_map_; std::map> reverse_index2_map_; int num_nb_; int net_stride_; // Now PIPNet support num_landmarks in {19, 29, 68, 98} std::vector supported_num_landmarks_; // tuple of (width, height), default (256, 256) std::vector size_; // Mean parameters for normalize, size should be the the same as channels, // default mean_vals = {0.485f, 0.456f, 0.406f} std::vector mean_vals_; // Std parameters for normalize, size should be the the same as channels, // default std_vals = {0.229f, 0.224f, 0.225f} std::vector std_vals_; // number of landmarks int num_landmarks_; }; } // namespace facealign } // namespace vision } // namespace ultra_infer