// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "ultra_infer/ultra_infer_model.h" #include "ultra_infer/vision/common/processors/transform.h" #include "ultra_infer/vision/common/result.h" namespace ultra_infer { namespace vision { /** \brief All object face detection model APIs are defined inside this * namespace * */ namespace facedet { /*! @brief RetinaFace model object used when to load a RetinaFace model exported * by RetinaFace. */ class ULTRAINFER_DECL RetinaFace : public UltraInferModel { public: /** \brief Set path of model file and the configuration of runtime. * * \param[in] model_file Path of model file, e.g ./retinaface.onnx * \param[in] params_file Path of parameter file, e.g ppyoloe/model.pdiparams, * if the model format is ONNX, this parameter will be ignored \param[in] * custom_option RuntimeOption for inference, the default will use cpu, and * choose the backend defined in "valid_cpu_backends" \param[in] model_format * Model format of the loaded model, default is ONNX format */ RetinaFace(const std::string &model_file, const std::string ¶ms_file = "", const RuntimeOption &custom_option = RuntimeOption(), const ModelFormat &model_format = ModelFormat::ONNX); std::string ModelName() const { return "Pytorch_Retinaface"; } /** \brief Predict the face detection result for an input image * * \param[in] im The input image data, comes from cv::imread(), is a 3-D array * with layout HWC, BGR format \param[in] result The output face detection * result will be written to this structure \param[in] conf_threshold * confidence threshold for postprocessing, default is 0.25 \param[in] * nms_iou_threshold iou threshold for NMS, default is 0.4 \return true if * the prediction succeeded, otherwise false */ virtual bool Predict(cv::Mat *im, FaceDetectionResult *result, float conf_threshold = 0.25f, float nms_iou_threshold = 0.4f); /*! @brief Argument for image preprocessing step, tuple of (width, height), decide the target size after resize, default (640, 640) */ std::vector size; /*! @brief Argument for image postprocessing step, variance in RetinaFace's prior-box(anchor) generate process, default (0.1, 0.2) */ std::vector variance; /*! @brief Argument for image postprocessing step, downsample strides (namely, steps) for RetinaFace to generate anchors, will take (8,16,32) as default values */ std::vector downsample_strides; /*! @brief Argument for image postprocessing step, min sizes, width and height for each anchor, default min_sizes = {{16, 32}, {64, 128}, {256, 512}} */ std::vector> min_sizes; /*! @brief Argument for image postprocessing step, landmarks_per_face, default 5 in RetinaFace */ int landmarks_per_face; private: bool Initialize(); bool Preprocess(Mat *mat, FDTensor *output, std::map> *im_info); bool Postprocess(std::vector &infer_result, FaceDetectionResult *result, const std::map> &im_info, float conf_threshold, float nms_iou_threshold); bool IsDynamicInput() const { return is_dynamic_input_; } bool is_dynamic_input_; }; } // namespace facedet } // namespace vision } // namespace ultra_infer