// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "ultra_infer/ultra_infer_model.h" #include "ultra_infer/vision/common/processors/transform.h" #include "ultra_infer/vision/common/result.h" #include "ultra_infer/vision/keypointdet/pptinypose/pptinypose_utils.h" namespace ultra_infer { namespace vision { /** \brief All keypoint detection model APIs are defined inside this namespace * */ namespace keypointdetection { /*! @brief PPTinyPose model object used when to load a PPTinyPose model exported * by PaddleDetection */ class ULTRAINFER_DECL PPTinyPose : public UltraInferModel { public: /** \brief Set path of model file and configuration file, and the * configuration of runtime * * \param[in] model_file Path of model file, e.g pptinypose/model.pdmodel * \param[in] params_file Path of parameter file, e.g * pptinypose/model.pdiparams, if the model format is ONNX, this parameter * will be ignored \param[in] config_file Path of configuration file for * deployment, e.g pptinypose/infer_cfg.yml \param[in] custom_option * RuntimeOption for inference, the default will use cpu, and choose the * backend defined in `valid_cpu_backends` \param[in] model_format Model * format of the loaded model, default is Paddle format */ PPTinyPose(const std::string &model_file, const std::string ¶ms_file, const std::string &config_file, const RuntimeOption &custom_option = RuntimeOption(), const ModelFormat &model_format = ModelFormat::PADDLE); /// Get model's name std::string ModelName() const { return "PaddleDetection/PPTinyPose"; } /** \brief Predict the keypoint detection result for an input image * * \param[in] im The input image data, comes from cv::imread() * \param[in] result The output keypoint detection result will be written to * this structure \return true if the keypoint prediction succeeded, otherwise * false */ bool Predict(cv::Mat *im, KeyPointDetectionResult *result); /** \brief Predict the keypoint detection result with given detection result * for an input image * * \param[in] im The input image data, comes from cv::imread() * \param[in] result The output keypoint detection result will be written to * this structure \param[in] detection_result The structure stores pedestrian * detection result, which is used to crop image for multi-persons keypoint * detection \return true if the keypoint prediction succeeded, otherwise * false */ bool Predict(cv::Mat *im, KeyPointDetectionResult *result, const DetectionResult &detection_result); /** \brief Whether using Distribution-Aware Coordinate Representation for * Human Pose Estimation(DARK for short) in postprocess, default is true */ bool use_dark = true; /// This function will disable normalize in preprocessing step. void DisableNormalize() { disable_normalize_ = true; BuildPreprocessPipelineFromConfig(); } /// This function will disable hwc2chw in preprocessing step. void DisablePermute() { disable_permute_ = true; BuildPreprocessPipelineFromConfig(); } protected: bool Initialize(); /// Build the preprocess pipeline from the loaded model bool BuildPreprocessPipelineFromConfig(); /// Preprocess an input image, and set the preprocessed results to `outputs` bool Preprocess(Mat *mat, std::vector *outputs); /// Postprocess the inferenced results, and set the final result to `result` bool Postprocess(std::vector &infer_result, KeyPointDetectionResult *result, const std::vector ¢er, const std::vector &scale); private: std::vector> processors_; std::string config_file_; // for recording the switch of hwc2chw bool disable_permute_ = false; // for recording the switch of normalize bool disable_normalize_ = false; }; } // namespace keypointdetection } // namespace vision } // namespace ultra_infer