// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "ultra_infer/ultra_infer_model.h" #include "ultra_infer/vision/segmentation/ppseg/postprocessor.h" #include "ultra_infer/vision/segmentation/ppseg/preprocessor.h" namespace ultra_infer { namespace vision { /** \brief All segmentation model APIs are defined inside this namespace * */ namespace segmentation { /*! @brief PaddleSeg serials model object used when to load a PaddleSeg model * exported by PaddleSeg repository */ class ULTRAINFER_DECL PaddleSegModel : public UltraInferModel { public: /** \brief Set path of model file and configuration file, and the * configuration of runtime * * \param[in] model_file Path of model file, e.g unet/model.pdmodel * \param[in] params_file Path of parameter file, e.g unet/model.pdiparams, if * the model format is ONNX, this parameter will be ignored \param[in] * config_file Path of configuration file for deployment, e.g unet/deploy.yml * \param[in] custom_option RuntimeOption for inference, the default will use * cpu, and choose the backend defined in `valid_cpu_backends` \param[in] * model_format Model format of the loaded model, default is Paddle format */ PaddleSegModel(const std::string &model_file, const std::string ¶ms_file, const std::string &config_file, const RuntimeOption &custom_option = RuntimeOption(), const ModelFormat &model_format = ModelFormat::PADDLE); /** \brief Clone a new PaddleSegModel with less memory usage when multiple * instances of the same model are created * * \return new PaddleDetModel* type unique pointer */ virtual std::unique_ptr Clone() const; /// Get model's name std::string ModelName() const { return "PaddleSeg"; } /** \brief DEPRECATED Predict the segmentation result for an input image * * \param[in] im The input image data, comes from cv::imread(), is a 3-D array * with layout HWC, BGR format \param[in] result The output segmentation * result will be written to this structure \return true if the segmentation * prediction succeeded, otherwise false */ virtual bool Predict(cv::Mat *im, SegmentationResult *result); /** \brief Predict the segmentation result for an input image * * \param[in] im The input image data, comes from cv::imread(), is a 3-D array * with layout HWC, BGR format \param[in] result The output segmentation * result will be written to this structure \return true if the segmentation * prediction succeeded, otherwise false */ virtual bool Predict(const cv::Mat &im, SegmentationResult *result); /** \brief Predict the segmentation results for a batch of input images * * \param[in] imgs, The input image list, each element comes from cv::imread() * \param[in] results The output segmentation result list * \return true if the prediction succeeded, otherwise false */ virtual bool BatchPredict(const std::vector &imgs, std::vector *results); /// Get preprocessor reference of PaddleSegModel virtual PaddleSegPreprocessor &GetPreprocessor() { return preprocessor_; } /// Get postprocessor reference of PaddleSegModel virtual PaddleSegPostprocessor &GetPostprocessor() { return postprocessor_; } protected: bool Initialize(); PaddleSegPreprocessor preprocessor_; PaddleSegPostprocessor postprocessor_; }; } // namespace segmentation } // namespace vision } // namespace ultra_infer