# Runtime use_gpu: true use_xpu: false use_mlu: false use_npu: false log_iter: 20 save_dir: output snapshot_epoch: 1 print_flops: false print_params: false use_ema: true # Dataset metric: COCO num_classes: 80 TrainDataset: name: COCODataSet image_dir: train2017 anno_path: annotations/instances_train2017.json dataset_dir: dataset/coco data_fields: ['image', 'gt_bbox', 'gt_class', 'is_crowd'] EvalDataset: name: COCODataSet image_dir: val2017 anno_path: annotations/instances_val2017.json dataset_dir: dataset/coco allow_empty: true TestDataset: name: ImageFolder anno_path: annotations/instances_val2017.json # also support txt (like VOC's label_list.txt) dataset_dir: dataset/coco # if set, anno_path will be 'dataset_dir/anno_path' # Reader worker_num: 2 TrainReader: sample_transforms: - Decode: {} - RandomResize: {target_size: [[640, 1333], [672, 1333], [704, 1333], [736, 1333], [768, 1333], [800, 1333]], interp: 2, keep_ratio: True} - RandomFlip: {prob: 0.5} - NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]} - Permute: {} batch_transforms: - PadBatch: {pad_to_stride: -1} batch_size: 1 shuffle: true drop_last: true collate_batch: false EvalReader: sample_transforms: - Decode: {} - Resize: {interp: 2, target_size: [800, 1333], keep_ratio: True} - NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]} - Permute: {} batch_transforms: - PadBatch: {pad_to_stride: -1} batch_size: 1 shuffle: false drop_last: false TestReader: sample_transforms: - Decode: {} - Resize: {interp: 2, target_size: [800, 1333], keep_ratio: True} - NormalizeImage: {is_scale: true, mean: [0.485,0.456,0.406], std: [0.229, 0.224,0.225]} - Permute: {} batch_transforms: - PadBatch: {pad_to_stride: -1} batch_size: 1 shuffle: false drop_last: false # Model architecture: FasterRCNN pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet101_pretrained.pdparams FasterRCNN: backbone: ResNet rpn_head: RPNHead bbox_head: BBoxHead # post process bbox_post_process: BBoxPostProcess ResNet: # index 0 stands for res2 depth: 101 norm_type: bn freeze_at: 0 return_idx: [2] num_stages: 3 RPNHead: anchor_generator: aspect_ratios: [0.5, 1.0, 2.0] anchor_sizes: [32, 64, 128, 256, 512] strides: [16] rpn_target_assign: batch_size_per_im: 256 fg_fraction: 0.5 negative_overlap: 0.3 positive_overlap: 0.7 use_random: True train_proposal: min_size: 0.0 nms_thresh: 0.7 pre_nms_top_n: 12000 post_nms_top_n: 2000 topk_after_collect: False test_proposal: min_size: 0.0 nms_thresh: 0.7 pre_nms_top_n: 6000 post_nms_top_n: 1000 BBoxHead: head: Res5Head roi_extractor: resolution: 14 sampling_ratio: 0 aligned: True bbox_assigner: BBoxAssigner with_pool: true BBoxAssigner: batch_size_per_im: 512 bg_thresh: 0.5 fg_thresh: 0.5 fg_fraction: 0.25 use_random: True BBoxPostProcess: decode: RCNNBox nms: name: MultiClassNMS keep_top_k: 100 score_threshold: 0.05 nms_threshold: 0.5 # Optimizer epoch: 12 LearningRate: base_lr: 0.01 schedulers: - !PiecewiseDecay gamma: 0.1 milestones: [8, 11] - !LinearWarmup start_factor: 0.1 steps: 1000 OptimizerBuilder: optimizer: momentum: 0.9 type: Momentum regularizer: factor: 0.0001 type: L2 # Exporting the model export: post_process: True # Whether post-processing is included in the network when export model. nms: True # Whether NMS is included in the network when export model. benchmark: False # It is used to testing model performance, if set `True`, post-process and NMS will not be exported. fuse_conv_bn: False