batch_size: 2 iters: 80000 train_dataset: type: Cityscapes dataset_root: data/cityscapes transforms: - type: ResizeStepScaling min_scale_factor: 0.5 max_scale_factor: 2.0 scale_step_size: 0.25 - type: RandomPaddingCrop crop_size: [1024, 512] - type: RandomHorizontalFlip - type: RandomDistort brightness_range: 0.4 contrast_range: 0.4 saturation_range: 0.4 - type: Normalize mode: train val_dataset: type: Cityscapes dataset_root: data/cityscapes transforms: - type: Normalize mode: val optimizer: type: SGD momentum: 0.9 weight_decay: 4.0e-5 lr_scheduler: type: PolynomialDecay learning_rate: 0.01 end_lr: 0 power: 0.9 loss: types: - type: CrossEntropyLoss coef: [1] model: type: DeepLabV3 backbone: type: ResNet101_vd output_stride: 8 multi_grid: [1, 2, 4] pretrained: https://bj.bcebos.com/paddleseg/dygraph/resnet101_vd_ssld.tar.gz backbone_indices: [3] aspp_ratios: [1, 12, 24, 36] aspp_out_channels: 256 align_corners: False pretrained: null