batch_size: 1 iters: 20 output_op: none model: type: STFPM backbone: type: ResNet18 train_dataset: type: Dataset num_classes: 1 dataset_root: /mv_dataset/hazelnut transforms: - type: Resize target_size: [256, 256] - type: Normalize mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] mode: train val_dataset: type: Dataset num_classes: 1 dataset_root: /mv_dataset/hazelnut transforms: - type: Resize target_size: [256, 256] - type: Normalize mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] mode: val loss: types: - type: DistillationLoss coef: [1] optimizer: type: SGD momentum: 0.9 weight_decay: 1.0e-4 lr_scheduler: type: PolynomialDecay learning_rate: 0.4 end_lr: 0.4 power: 0.9