# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os.path as osp import numpy as np import paddle from paddleslim import L1NormFilterPruner def build_yolo_transforms(params): from paddlex import transforms as T target_size = params.image_shape[0] use_mixup = params.use_mixup dt_list = [] if use_mixup: dt_list.append( T.MixupImage( alpha=params.mixup_alpha, beta=params.mixup_beta, mixup_epoch=int(params.num_epochs * 25. / 27))) dt_list.extend([ T.RandomDistort( brightness_range=params.brightness_range, brightness_prob=params.brightness_prob, contrast_range=params.contrast_range, contrast_prob=params.contrast_prob, saturation_range=params.saturation_range, saturation_prob=params.saturation_prob, hue_range=params.hue_range, hue_prob=params.hue_prob), T.RandomExpand( prob=params.expand_prob, im_padding_value=[float(int(x * 255)) for x in params.image_mean]) ]) crop_image = params.crop_image if crop_image: dt_list.append(T.RandomCrop()) dt_list.extend([ T.Resize( target_size=target_size, interp='RANDOM'), T.RandomHorizontalFlip(prob=params.horizontal_flip_prob), T.Normalize( mean=params.image_mean, std=params.image_std) ]) train_transforms = T.Compose(dt_list) eval_transforms = T.Compose([ T.Resize( target_size=target_size, interp='CUBIC'), T.Normalize( mean=params.image_mean, std=params.image_std), ]) return train_transforms, eval_transforms def build_rcnn_transforms(params): from paddlex import transforms as T short_size = min(params.image_shape) max_size = max(params.image_shape) train_transforms = T.Compose([ T.RandomDistort( brightness_range=params.brightness_range, brightness_prob=params.brightness_prob, contrast_range=params.contrast_range, contrast_prob=params.contrast_prob, saturation_range=params.saturation_range, saturation_prob=params.saturation_prob, hue_range=params.hue_range, hue_prob=params.hue_prob), T.RandomHorizontalFlip(prob=params.horizontal_flip_prob), T.Normalize( mean=params.image_mean, std=params.image_std), T.ResizeByShort( short_size=short_size, max_size=max_size), ]) eval_transforms = T.Compose([ T.Normalize(), T.ResizeByShort( short_size=short_size, max_size=max_size), ]) return train_transforms, eval_transforms def build_pico_transforms(params): from paddlex import transforms as T target_size = params.image_shape[0] dt_list = [] dt_list.extend([ T.RandomDistort( brightness_range=params.brightness_range, brightness_prob=params.brightness_prob, contrast_range=params.contrast_range, contrast_prob=params.contrast_prob, saturation_range=params.saturation_range, saturation_prob=params.saturation_prob, hue_range=params.hue_range, hue_prob=params.hue_prob), ]) crop_image = params.crop_image if crop_image: dt_list.append(T.RandomCrop()) dt_list.extend([ T.Resize( target_size=target_size, interp='RANDOM'), T.RandomHorizontalFlip(prob=params.horizontal_flip_prob), T.Normalize( mean=params.image_mean, std=params.image_std) ]) train_transforms = T.Compose(dt_list) eval_transforms = T.Compose([ T.Resize( target_size=target_size, interp='CUBIC'), T.Normalize( mean=params.image_mean, std=params.image_std), ]) return train_transforms, eval_transforms def build_voc_datasets(dataset_path, train_transforms, eval_transforms): import paddlex as pdx train_file_list = osp.join(dataset_path, 'train_list.txt') eval_file_list = osp.join(dataset_path, 'val_list.txt') label_list = osp.join(dataset_path, 'labels.txt') train_dataset = pdx.datasets.VOCDetection( data_dir=dataset_path, file_list=train_file_list, label_list=label_list, transforms=train_transforms, shuffle=True) eval_dataset = pdx.datasets.VOCDetection( data_dir=dataset_path, file_list=eval_file_list, label_list=label_list, transforms=eval_transforms) return train_dataset, eval_dataset def build_coco_datasets(dataset_path, train_transforms, eval_transforms): import paddlex as pdx data_dir = osp.join(dataset_path, 'JPEGImages') train_ann_file = osp.join(dataset_path, 'train.json') eval_ann_file = osp.join(dataset_path, 'val.json') train_dataset = pdx.datasets.CocoDetection( data_dir=data_dir, ann_file=train_ann_file, transforms=train_transforms, shuffle=True) eval_dataset = pdx.datasets.CocoDetection( data_dir=data_dir, ann_file=eval_ann_file, transforms=eval_transforms) return train_dataset, eval_dataset def build_optimizer(parameters, step_each_epoch, params): import paddle from paddle.regularizer import L2Decay learning_rate = params.learning_rate lr_decay_epochs = params.lr_decay_epochs warmup_steps = params.warmup_steps warmup_start_lr = params.warmup_start_lr boundaries = [b * step_each_epoch for b in lr_decay_epochs] values = [ learning_rate * (0.1**i) for i in range(len(lr_decay_epochs) + 1) ] lr = paddle.optimizer.lr.PiecewiseDecay( boundaries=boundaries, values=values) lr = paddle.optimizer.lr.LinearWarmup( learning_rate=lr, warmup_steps=warmup_steps, start_lr=warmup_start_lr, end_lr=learning_rate) factor = 1e-04 if params.model in ['FasterRCNN', 'MaskRCNN'] else 5e-04 optimizer = paddle.optimizer.Momentum( learning_rate=lr, momentum=0.9, weight_decay=L2Decay(factor), parameters=parameters) return optimizer def train(task_path, dataset_path, params): import paddlex as pdx pdx.log_level = 3 if params.model in ['YOLOv3', 'PPYOLO', 'PPYOLOTiny', 'PPYOLOv2']: train_transforms, eval_transforms = build_yolo_transforms(params) elif params.model in ['PicoDet']: train_transforms, eval_transforms = build_pico_transforms(params) elif params.model in ['FasterRCNN', 'MaskRCNN']: train_transforms, eval_transforms = build_rcnn_transforms(params) if osp.exists(osp.join(dataset_path, 'JPEGImages')) and \ osp.exists(osp.join(dataset_path, 'train.json')) and \ osp.exists(osp.join(dataset_path, 'val.json')): train_dataset, eval_dataset = build_coco_datasets( dataset_path=dataset_path, train_transforms=train_transforms, eval_transforms=eval_transforms) elif osp.exists(osp.join(dataset_path, 'train_list.txt')) and \ osp.exists(osp.join(dataset_path, 'val_list.txt')) and \ osp.exists(osp.join(dataset_path, 'labels.txt')): train_dataset, eval_dataset = build_voc_datasets( dataset_path=dataset_path, train_transforms=train_transforms, eval_transforms=eval_transforms) step_each_epoch = train_dataset.num_samples // params.batch_size train_batch_size = params.batch_size save_interval_epochs = params.save_interval_epochs save_dir = osp.join(task_path, 'output') pretrain_weights = params.pretrain_weights if pretrain_weights is not None and osp.exists(pretrain_weights): pretrain_weights = osp.join(pretrain_weights, 'model.pdparams') detector = getattr(pdx.det, params.model) num_classes = len(train_dataset.labels) sensitivities_path = params.sensitivities_path pruned_flops = params.pruned_flops model = detector(num_classes=num_classes, backbone=params.backbone) if sensitivities_path is not None: # load weights model.net_initialize(pretrain_weights=pretrain_weights) pretrain_weights = None # prune dataset = eval_dataset or train_dataset im_shape = dataset[0]['image'].shape[:2] if getattr(model, 'with_fpn', False) or model.__class__.__name__ == 'PicoDet': im_shape[0] = int(np.ceil(im_shape[0] / 32) * 32) im_shape[1] = int(np.ceil(im_shape[1] / 32) * 32) inputs = [{ "image": paddle.ones( shape=[1, 3] + list(im_shape), dtype='float32'), "im_shape": paddle.full( [1, 2], 640, dtype='float32'), "scale_factor": paddle.ones( shape=[1, 2], dtype='float32') }] model.net.eval() model.pruner = L1NormFilterPruner( model.net, inputs=inputs, sen_file=sensitivities_path) model.prune(pruned_flops=pruned_flops) optimizer = build_optimizer(model.net.parameters(), step_each_epoch, params) model.train( num_epochs=params.num_epochs, train_dataset=train_dataset, train_batch_size=train_batch_size, eval_dataset=eval_dataset, save_interval_epochs=save_interval_epochs, log_interval_steps=2, save_dir=save_dir, pretrain_weights=pretrain_weights, optimizer=optimizer, use_vdl=True, resume_checkpoint=params.resume_checkpoint)