import paddlex as pdx import os os.environ['CUDA_VISIBLE_DEVICES'] = '0' # 下载训练好的模型 url = 'https://bj.bcebos.com/paddlex/models/mobilenetv2_vegetables.tar.gz' pdx.utils.download_and_decompress(url, path='.') # 下载相应的训练数据集 url = 'https://bj.bcebos.com/paddlex/datasets/vegetables_cls.tar.gz' pdx.utils.download_and_decompress(url, path='.') # 加载模型 model = pdx.load_model('mobilenetv2_vegetables') # 将正常模型导出为部署格式,用于对比 import time for i in range(60): print('save', i) time.sleep(1) model.export_inference_model('server_mobilenet') # 加载数据集用于量化 dataset = pdx.datasets.ImageNet( data_dir='vegetables_cls', file_list='vegetables_cls/train_list.txt', label_list='vegetables_cls/labels.txt', transforms=model.test_transforms) # 开始量化 pdx.slim.export_quant_model(model, dataset, save_dir='./quant_mobilenet', cache_dir='./tmp')